User interface for image acquisition devices

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S215000

Reexamination Certificate

active

06587129

ABSTRACT:

BACKGROUND OF THE INVENTION
This application is being filed with microfiche appendices of computer program listings consisting of one (1) fiche having fifty-six (56) frames.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
The present invention concerns an improved user interface for controlling an image acquisition device. In particular, the present invention provides a user interface including a property page having an interface for core image acquisition device control and a property page having an interface for device-dependent image acquisition device control. The present invention also provides a user interface in which a property page of a property sheet attractively provides plural interfaces for the control provided by that property page.
2. Description of the Related Art
Computer systems often include at least one image acquisition device. Most common among these devices are scanners, although digital cameras are becoming increasingly popular. In order to access the functionality of such devices, users interact with user interfaces developed to provide control over the devices. These user interfaces may be provided by an operating system, an application, a device driver, or by software loaded within an input device.
Some features of image acquisition devices which are controlled by user interfaces are common to various devices, even among devices made by different manufacturers. For example, both the user interface for a Hewlett-Packard scanner and the user interface for a Kodak digital camera typically will provide control over an image scale feature. Despite this commonality, conventional user interfaces for different image acquisition devices vary markedly in how these common features are controlled. Thus, users must relearn the control of those common features each time a new image acquisition device is added to their systems.
One conventional solution to the above problem is to provide a generic user interface. However, such user interfaces typically lack the flexibility needed to take advantage of unique features of various image acquisition devices. For example, a generic scanner interface typically would be unable to provide control of a new smoothing feature of a new scanner, especially if previously-supported scanners did not provide similar smoothing features.
Accordingly, there is a need for a user interface that provides common control of common features of different image acquisition devices while retaining the flexibility needed to provide tailored control that takes advantage of the unique features of each different image acquisition device.
In addition to the above problem, there are typically many different perspectives from which a user interface might allow control by a user. For example, in using an image acquisition device, a novice has a different understanding of the concept of tone than that of an expert. For a novice, “tone” might be understood as no more than simple brightness/contrast control, whereas an expert might understand “tone” to refer to gamma or to the input/output characteristics of an editable tone curve. Thus, from the perspective of a novice, the user interface should provide for tone control with a simple brightness/contrast adjustment, whereas from the perspective of an expert, the user interface should provide for tone control with a fully editable tone curve. Generalizing this concept, it is advantageous for a user interface to provide plural different interfaces for a single control.
One conventional arrangement for providing a user interface with plural different interfaces consists of a property page having buttons corresponding to each different interface. When a button is selected, a separate window containing the corresponding interface is displayed. This window is “modal”, which means that the user must make any desired adjustments within the window and exit the window before selecting another interface. Because this conventional arrangement requires the display of these modal windows, this arrangement results in a user interface that is cluttered and unwieldy.
Another conventional arrangement for providing a user interface with plural different interfaces consists of plural different interfaces crowded onto a single property page in a property sheet. Thus, one property page might provide a contrast/brightness interface, a gamma interface, and an editable curve interface, all displayed at once. However, this conventional arrangement leads to a poor user interface because the property page becomes too crowded and cluttered if more than a few interfaces are provided.
Alternatively, a user interface might provide plural different interfaces corresponding to a single control through a property sheet having separate property pages for each different interface. For example, in a scanner, to provide plural interfaces for tone control, one property page might have an interface that provides a contrast/brightness adjustment, and another property page might have an interface that provides an editable tone curve. However, this arrangement leads to a poor user interface for at least three reasons. First, too many property pages are needed, making the user interface unwieldy and unattractive. Second, because different interfaces to a single control are spread out over separate property pages, and because each interface has a different appearance, a user might be confused into thinking that each property page actually provides a different control. Third, in order to avoid inconsistencies, manipulation of one property page must be reflected in the other property pages, thereby violating a basic user interface design convention which requires that manipulation of one property page should not affect another property. page. In contrast to this arrangement, a well-designed user interface typically will be organized so that a single exclusive control is provided by a single property page in a property sheet.
Accordingly, there is a need for a user interface in which a property page of a property sheet attractively provides plural interfaces for control provided by the property page.
SUMMARY OF THE INVENTION
The present invention addresses the foregoing deficiencies by providing a user interface for an image acquisition device. The user interface includes a preview area for displaying a preview image and a control area for displaying a property sheet. The property sheet has a plurality of property pages, each of the plurality of property pages having an interface for image acquisition device control. At least one property page has an interface for core image acquisition device control, and at least one property page has an interface for device-dependent image acquisition device control. Manipulation of the image acquisition device control is reflected in the preview image.
By means of this arrangement, the invention provides common interfaces for common features of different image acquisition devices while retaining flexibility needed to tailor the interface for unique features of different image acquisition devices. For example, in one representative embodiment, the user interface provides a property sheet with “Main”, “Tone”, and “Preferences” property pages for interfaces that provide core image acquisition device control. These three property pages are provided regardless of the kind of image acquisition device connected to a computer system executing the user interface. The property sheet also can have one or more dynamically-loaded device-dependent property pages. Thus, if an interface is needed for the unique features of a particular scanner, for example a scanner that provides unique half-toning features, a dynamically-loaded device-dependent property page can provide that interface.
In th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

User interface for image acquisition devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with User interface for image acquisition devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and User interface for image acquisition devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3082944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.