Use of (Z)-2-cyano-3-hydroxy-but-2-enoic...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ester doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06794410

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods of treating multiple sclerosis. In particular, the present invention relates to the treatment of multiple sclerosis with (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide, commonly known as teriflunomide.
BACKGROUND OF THE INVENTION
(Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide (teriflunomide) has the structure illustrated in Formula I:
It is an active metabolite of the disease-modifying, antirheumatic drug 5-methylisoxazole-4-carboxylic-(4-trifluoromethyl)-anilide commonly known as leflunomide, the structure of which is shown in Formula II. Leflunomide was first disclosed generically in U.S. Pat. No. 4,087,535, issued on May 2, 1978 and specifically in U.S. Pat. No. 4,284,786, issued on Aug. 18, 1981, wherein it was disclosed that the compound could be used for the treatment of multiple sclerosis. The aforementioned patents are both incorporated herein by reference.
(Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide (teriflunomide,Formula I) use in treating chronic graft-versus-host disease has been disclosed in U.S. Pat. No. 4,965,276 issued on Oct. 23, 1990, incorporated herein by reference. U.S. Pat. No. 5,459,163 issued on Oct. 21, 1997 and U.S. Pat. No. 5,679,709 issued on Oct. 21, 1997 disclose compositions useful for treating autoimmune diseases in particular lupus erythematosus. Both of the aforementioned patents are incorporated herein by reference. Teriflunomide has been shown to produce antiproliferative effects on a wide variety of immune cells and cell lines (Cherwinski H. M., et al., J Pharmacol. Exp. Ther. 1995;272:460-8; Prkash A., et al., Drugs 1999;58(6):1137-66; Bartlett R. R. et al., Agent Action 1991;32(1-2):10-21). Additionally, it inhibits the enzyme dihydrooate dehydrogenase, an enzyme essential for the synthesis of pyrimidines (Bruneau J-M, et al., Biochem. J. 1998; 36:299-303).
Multiple sclerosis (MS) is a debilitating, inflammatory, neurological illness characterized by demyelination of the central nervous system. The disease primarily affects young adults with a higher incidence in females. Symptoms of the disease include fatigue, numbness, tremor, tingling, dysesthesias, visual disturbances, dizziness, cognitive impairment, urologic dysfunction, decreased mobility, and depression. Four types classify the clinical patterns of the disease: relapsing-remitting, secondary progressive, primary-progressive and progressive-relapsing (S. L. Hauser and D. E. Goodkin, Multiple Sclerosis and Other Demyelinating Diseases in Harrison's Principles of Internal Medicine 14
th
Edition, vol. 2, Mc Graw-Hill, 1998, pp. 2409-2419).
The exact etiology of MS is unknown; however, it is strongly suspected that the demyelination characteristic of the disease is the result of an autoimmune response perhaps triggered by an environmental insult, e.g. a viral infection. Specifically, it is hypothesized that MS is caused by a T-cell-mediated, autoimmune inflammatory reaction. The autoimmune basis is strongly supported by the fact that antibodies specific to myelin basic protein (MBP) have been found in the serum and cerebrospinal fluid of MS patients and these antibodies along with T-cells that are reactive to MBP and other myelin proteolipids increase with disease activity. Furthermore, at the cellular level it is speculated that T-cell proliferation and other cellular events, such as activation of B cells and macrophages and secretion of cytokines accompanied by a breakdown of the blood-brain barrier can cause destruction of myelin and oligodendrocytes. (R. A. Adams, M. V. Victor and A. H. Ropper eds, Principles of Neurology, Mc Graw-Hill, New York, 1997, pp.903-921). Progressive MS (primary and secondary may be based on a nuerodegenerative process occurring with demyelination.
At the present time there is no cure for MS. Current therapies are aimed at alleviating the symptoms of the disease and arresting its progress, as much as possible. Depending upon the type, drug treatment usually entails the use of disease-modifying agents such as the interferons (interferon beta 1-a, beta 1-b and alpha 2), glatiramer acetate or corticosteroids such as methylprednisolone and prednisone. Also, chemotherapeutic agents such as methotrexate, azathioprine, cladribine cyclophosphamide and cyclosporine have been used. All of the above treatments have side-effect liabilities, little or no effect on fatigue and depression, limited effects on relapse rates and on ability to prevent exacerbation of the disease. Treatment with interferons may also induce the production of neutralizing antibodies, which may ultimately decrease the efficacy of this therapy. Therefore, there still exists a strong need for new drugs, which can be used alone or in combination with other drugs to combat the progression and symptoms of MS.
SUMMARY OF THE PRESENT INVENTION
The present invention is a method of treating multiple sclerosis in patients by administering a compound of Formula I or a pharmaceutically acceptable salt thereof, in a therapeutically effective amount to treat the disease. The present invention also comprises a method of treating multiple sclerosis in patients by administering a combination of a compound of Formula I or a pharmaceutically acceptable salt thereof, with another compound known to be effective for the treatment of multiple sclerosis in therapeutically effective amounts to treat the disease.
DETAILED DESCRIPTION OF THE INVENTION
Terms used herein have the meanings defined in this specification.
a) “Pharmaceutically acceptable salts” means either an acid addition salt or a basic addition salt, whichever is possible to make with the compounds of the present invention.
“Pharmaceutically acceptable acid addition salt” is any non-toxic organic or inorganic acid addition salt of the base compounds represented by Formula I. Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acid and acid metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids which form suitable salts include the mono-, di- and tri-carboxylic acids. Illustrative of such acids are, for example, acetic, glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, benzoic, hydroxybenzoic, phenylacetic, cinnamic, salicyclic, 2-phenoxybenzoic, p-toluenesulfonic acid and sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid. Either the mono- or di-acid salts can be formed, and such salts can exist in either a hydrated or substantially anhydrous form. In general, the acid addition salts of these compounds are more soluble in water and various hydrophilic organic solvents and which in comparison to their free base forms, generally demonstrate higher melting points.
“Pharmaceutically acceptable basic addition salts” means non-toxic organic or inorganic basic addition salts of the compounds of Formula I. Examples are alkali metal or alkaline-earth metal hydroxides such as sodium, potassium, calcium, magnesium or barium hydroxides; ammonia, and aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline. The selection of the appropriate salt may be important so that the ester is not hydrolyzed. The selection criteria for the appropriate salt will be known to one skilled in the art.
b) “Patient” means a warm blooded animal, such as for example rat, mice, dogs, cats, guinea pigs, and primates such as humans.
c) “Treat” or “treating” means any treatment, including, but not limited to, alleviating symptoms, eliminating the causation of the symptoms either on a temporary or permanent basis, or preventing or slowing the appearance of symptoms and progression of the named disorder or condition.
d) “Therapeutically effective amount” means an amount of the compound, which is effective in treating the named disorder or condition.
e) “Pharmaceutically ac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of (Z)-2-cyano-3-hydroxy-but-2-enoic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of (Z)-2-cyano-3-hydroxy-but-2-enoic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of (Z)-2-cyano-3-hydroxy-but-2-enoic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.