Use of transition metal complexes having oxime ligands as...

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S312000, C510S372000, C510S376000, C510S378000, C008S111000, C008S137000, C502S200000

Reexamination Certificate

active

06746996

ABSTRACT:

The present invention relates to the use of certain transition metal complexes for increasing the bleaching action of peroxygen compounds during the bleaching of colored soilings both on textiles and also on hard surfaces, and to laundry detergents and cleaners which comprise complex compounds of this type.
BACKGROUND OF THE INVENTION
Inorganic peroxygen compounds, in particular hydrogen peroxide and solid peroxygen compounds which dissolve in water to liberate hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have been used for a long time as oxidizing agents for disinfection and bleaching purposes. The oxidation effect of these substances depends heavily on the temperature in dilute solutions; thus, for example, using H
2
O
2
or perborate in alkaline bleach liquors, a sufficiently rapid bleaching of soiled textiles is achieved only at temperatures above approximately 80° C.
At lower temperatures, the oxidation effect of the inorganic peroxygen compounds can be improved by adding “bleach activators”. For this purpose, numerous proposals have been worked out in the past, primarily from the substance classes of N- or O-acyl compounds, for example polyacylated alkylenediamines, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, hydrotriazines, urazoles, diketopiperazines, sulfurylamides and cyanurates, and also carboxylic anhydrides, in particular phthalic anhydride and substituted maleic anhydrides, carboxylic esters, in particular sodium nonanoyloxybenzenesulfonate (NOBS), sodium isononanoyloxybenzenesulfonate (ISONOBS) and acylated sugar derivatives, such as pentaacetylglucose. By adding these substances it is possible to increase the bleaching action of aqueous peroxide solutions to the extent that even at temperatures around 60° C. essentially the same effects arise as with the peroxide solution on its own at 95° C.
In the development of energy-saving washing and bleaching processes, use temperatures significantly below 60° C., in particular below 45° C. down to cold-water temperature, have gained in importance in recent years. At these low temperatures, the effect of the activator compounds known hitherto usually noticeably decreases. There has therefore been no lack of attempts to develop more effective activators for this temperature range although hitherto a convincing success has not been recorded.
A starting point for this arises from the use of transition metal salts and complexes thereof, as are described, for example, in EP 0 392 592, EP 0 443 651, EP 0 458 397, EP 0 544 490 or EP 0 549 271. EP 0 272 030 describes cobalt(II) complexes having ammonia ligands which, in addition, may have any further mono-, bi-, tri- and/or tetradentate ligands, as activators for H
2
O
2
for use in textile detergents or bleaches. WO 96/23859, WO 96/23860 and WO 96/23861 describe the use of corresponding Co(III) complexes in compositions for automatic dishwashing. EP 0 630 964 discloses certain manganese complexes which, despite not having a marked effect with regard to a bleach boosting of peroxygen compounds and not decoloring textile fibers, are able to effect bleaching of soil or dye detached from the fiber and present in wash liquors. DE 44 16 438 discloses manganese, copper and cobalt complexes which can carry ligands from a large number of groups of substances and are reportedly used as bleach and oxidation catalysts. WO 97/07191 proposes complexes of manganese, iron, cobalt, ruthenium and molybdenum with ligands of the salene type as activators for peroxygen compounds in cleaning solutions for hard surfaces.
The aim of the present invention is to improve the oxidation and bleaching action of peroxygen compounds, in particular of inorganic peroxygen compounds, at low temperatures below 80° C., in particular in the temperature range from about 15° C. to 45° C.
SUMMARY OF THE INVENTION
Surprisingly, it has now been found that certain transition metal complexes of ligands with an oximato or dioximato structure contribute significantly to the cleaning performance on colored soilings present on textiles or on hard surfaces.
The invention provides for the use of transition metal complexes having oxime ligands as bleach catalyst for peroxygen compounds, wherein the transition metal complexes have the formula (1)
M(L)
n
X
m
  (1)
where
M is a metal atom from the group Mn, Fe, Co, Ni, Mo, W,
L is a ligand of the formula
R
1
R
2
C═N—O(H)
z
R
1
is C
1
-C
22
-alkyl, C
2
-C
22
-alkenyl or C
5
-C
24
-aryl,
R
2
is H, C
1
-C
22
-alkyl, C
2
-C
22
-alkenyl, C
5
-C
24
-aryl or
where z=0 or 1,
X is a neutral or anion ligand from the group consisting of pyridines, imidazolines, methylimidazoles, picolines, lutidines, chloride, bromide, nitrate, perchlorate, citrate, hexafluorophosphate or anions of organic acids having C
1
-C
22
carbon atoms, n is a number from 2 to 4 and m is a number from 0 to 4.
These transition metal complexes are used in laundry detergents and cleaners, in particular in the washing of textiles and in cleaners for hard surfaces, in particular for dishes, and in solutions for bleaching colored soilings.
Preference is given to using complexes with transition metal central atoms in oxidation states +2, +3 or +4, and complexes containing manganese or iron as central atoms. Corresponding manganese compounds have hitherto not been described in the literature.
DETAILED DESCRIPTION OF THE INVENTION
The ligand (L) represents an oximato or dioximato ligand. Examples thereof are acetoxime, acetal oxime, salicyloxime and glyoxime, dimethylglyoxime, methylethylglyoxime, cyclohexanedione dioxime and other oximes or dioximes as described, for example, in A. Chakravorty, Coord. Chem. Rev. 13 (1974), 1-46 and I. W. Pang and D. V. Stynes, Inorg. Chem., 1977, 16, 590, G. N. Schrauzer and L. P. Lee, J.Am.Chem.Soc., 1970, 92, 1551. The oximes and dioximes can, as the person skilled in the art knows, be obtained by reacting the corresponding aldehydes, ketones or diketones with hydroxylamine.
Apart from the ligands (L) according to the formula I, the transition metal complexes to be used according to the invention can also carry further, usually simply constructed, ligands (X), in particular neutral ligands, or mono- or polyvalent anion ligands. Examples thereof are optionally substituted pyridines, imidazoles, methylimidazoles, picolines, imidazolines or lutidines or similar nitrogen-containing heterocycles. These heterocycles are preferably in their unsubstituted form. Also suitable here are nitrate, acetate, formate, citrate, perchlorate, ammonia and the halides, such as chloride, bromide and iodide, and complex anions, such as hexafluorophosphate or anions of organic C
1
-C
22
-carboxylic acids, such as acetates, propionates, butyrates, hexanoates, octanoates, nonanoate and laurate. The anion ligands serve to balance the charge between transition metal central atom and the ligand system. The presence of oxo ligands, peroxo ligands and imino ligands is also possible. These additional ligands can also have a bridging action, giving rise to polynuclear complexes having at least one ligand according to formula I.
Particularly preferred complexes are
a) [bis(cyclohexanone oxime)bis(cyclohexanone oximato)bis(pyridine)-manganese(II)]
b) [bis(diphenylglyoximato)bis(pyridine)manganese(II)]
Suitable peroxygen compounds are primarily all alkali metal perborate mono- and tetrahydrates and/or alkali metal percarbonates, and sodium is the preferred alkali metal. However, it is also possible to use alkali metal or ammonium peroxosulfates, such as, for example, potassium peroxomonosulfate (industrially: Caroat® or Oxone®). The concentration of inorganic oxidizing agent in the overall formulation of the laundry detergents and cleaners is 5-90%, preferably 10-70%.
The use amounts of peroxygen compounds are generally chosen so that between 10 ppm and 10% active oxygen, preferably between 50 ppm and 5000 ppm of active oxygen, are present in the solutions of the laundry detergents and cleaners. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of transition metal complexes having oxime ligands as... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of transition metal complexes having oxime ligands as..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of transition metal complexes having oxime ligands as... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3365455

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.