Use of protease in liquid to gel-form detergents

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S321000, C510S392000, C510S530000, C510S336000, C510S337000, C510S345000, C510S339000, C510S473000, C510S403000

Reexamination Certificate

active

06228827

ABSTRACT:

This invention relates to the use of mutated protease of the subtilisin type, which carries at least one mutation in its amino acid sequence, leading to a reduced positive charge or an increased negative charge in the substrate binding region of the molecule, in liquid to gel-form laundry detergents and to a liquid to gel-form detergent.
Enzymes, especially proteases, are widely used in detergents, washing aids and cleaning compositions. They make a significant contribution to the removal of soils from the fabrics. In order to maintain their activity, the enzymes are generally used in combination with suitable enzyme stabilizers.
In liquid detergents in particular, enzymes are exposed to severe stressing through their intimate contact with other ingredients. Accordingly, the stability of enzymes is more critical in liquid detergents than it is in powder-form detergents.
In order to minimize the effort involved in protecting enzymes in detergents, there is a constant need for enzymes which show relatively high stability to typical detergent ingredients so that the content of stabilizers and the level of safety measures can be reduced or minimized.
Accordingly, the problem addressed by the present invention was to find enzymes, more particularly proteases, which would show adequate stability in liquid or gel-form detergents, even in the absence of or in the presence of only minimal quantities of suitable stabilizers.
It has surprisingly been found that a mutated protease of the subtilisin type shows high stability in liquid to gel-form detergents and that this stability can be improved even further by addition of diols and/or triols and optionally a boron compound.
Accordingly, the present invention relates to the use of mutated protease of the subtilisin type which carries at least one mutation in its amino acid sequence, leading to a reduced positive charge or an increased negative charge in the substrate binding region of the molecule, in liquid to gel-form laundry detergents.
The present invention also relates to liquid to gel-form detergents containing enzymes, surfactants and other typical ingredients, characterized in that the enzyme is mutated protease of the subtilisin type which carries at least one mutation in its amino acid sequence, leading to a reduced positive charge or an increased negative charge in the substrate binding region of the molecule.
A protease preferably used in accordance with the invention is described in International patent application WO 95/23221. Particularly high stability is exhibited by proteases derived from alkaline Bacillus lentus protease obtained from the DSM 5483 strain. A mutated alkaline protease M131(S3T+V4I+A188P+V193M+199I) or a mutated alkaline protease M130(S3T+A188P+V193M+V199I) is particularly preferred. Particularly good enzyme activity is obtained if the product from the fermentation process is used directly, i.e. without further working up, as the protease. The proteases used in accordance with the invention are commercially obtainable, for example under the names of BLAPS (manufacturer: Henkel KGaA, Düisseldorf) or Everlase® 24 LDP (manufacturer: Novo Nordisk). The protease used in accordance with the invention is preferably used in a quantity of 0.1 to 2.5% by weight, based on the final detergent.
An increase in the stability of the enzymes used in accordance with the invention can be achieved by using the enzymes in combination with one or more C
1-6
diols and/or C
1-6
triols and at least one boron compound. These additional components may each be used in a quantity of up to 5% by weight and, more particularly, up to 2% by weight, based on the final detergent. Examples of diols and triols are ethylene glycol, propylene glycol, butane diol, diglycol, propyl or butyl diglycol, hexylene glycol and glycerol. Examples of boron compounds which may be used in accordance with the present invention are boric acid, boron oxide, alkali metal borates, such as ammonium, sodium and potassium orthoborates, metaborates and pyroborates, borax in its various stages of hydration and polyborates such as, for example, alkali metal pentaborates. Organic boron compounds, such as esters of boric acid, may also be used.
The detergents according to the invention contain as further ingredients surfactants selected from anionic, nonionic, cationic and/or amphoteric surfactants which are normally present in a quantity of more than 15% by weight and, more particularly, above 20% by weight. Mixtures of anionic and nonionic surfactants are preferred from the applicational point of view. The total surfactant content of the detergents according to the invention is preferably above 20% by weight, based on the detergent as a whole.
Preferred nonionic surfactants are alkoxylated, advantageously ethoxylated, more particularly primary alcohols preferably containing 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue may be linear or, preferably, 2-methyl-branched or may contain linear and methyl-branched residues in the form of the mixtures typically present in oxoalcohol residues. However, alcohol ethoxylates containing linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example coconut oil fatty alcohol, palm oil fatty alcohol, tallow fatty alcohol or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred. Preferred ethoxylated alcohols include, for example, C
12-14
alcohols containing 3 EO, 4 EO or 7 EO, C
9-11
alcohols containing 7 EO, C
13-15
alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C
12-18
alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C
12-14
alcohol containing 3 EO and C
12-18
alcohol containing 7 EO. The degrees of ethoxylation mentioned are statistical mean values which, for a special product, may be either a whole number or a broken number. Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE). In addition to these nonionic surfactants, fatty alcohols containing more than 12 EO may also be used. Examples of such fatty alcohols are tallow fatty alcohols containing 14 EO, 25 EO, 30 EO or 40 EO. Nonionic surfactants containing EO and PO groups together in the molecule may also be used in accordance with the invention. Block copolymers containing EO-PO block units or PO-EO block units and also EO-PO-EO copolymers and PO-EO-PO copolymers may be used. Mixed-alkoxylated nonionic surfactants in which EO and PO units are distributed statistically rather than in blocks may of course also be used. Products such as these can be obtained by the simultaneous action of ethylene and propylene oxide on fatty alcohols.
Other nonionic surfactants which may be used include alkyl glycosides with the general formula RO(G)
X
where R is a primary, linear or methyl-branched, more particularly 2-methyl-branched, aliphatic radical containing 8 to 22 and preferably 12 to 18 carbon atoms, G is a glycose unit containing 5 or 6 carbon atoms, preferably glucose. The degree of oligomerization x—which indicates the distribution of monoglycosides and oligoglycosides—is a number of 1 to 10 and preferably a number of 1.2 to 1.4.
Another class of preferred nonionic surfactants which are used either as sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters preferably containing 1 to 4 carbon atoms in the alkyl chain, more particularly the fatty acid methyl esters which are described, for example, in Japanese patent application JP 58/217598 or which are preferably produced by the process described in International patent application WO-A-90/13533.
Nonionic surfactants of the amine oxide type, for example N-cocoalkyl-N,N-dimethylamine oxide and N-tallowalkyl-N,N-dihydroxyethyl amine oxide, and the fatty acid alkanolamide type are also suitable. The quantity in which these nonionic surfactants are used is preferably no

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of protease in liquid to gel-form detergents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of protease in liquid to gel-form detergents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of protease in liquid to gel-form detergents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.