Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate
Reexamination Certificate
1999-12-09
2001-11-20
Boykin, Terressa M. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From phenol, phenol ether, or inorganic phenolate
Reexamination Certificate
active
06320016
ABSTRACT:
The present invention relates to the use of polycarbonates containing iodophenyl carbonate in the production of special mouldings.
Within the scope of the present invention, polycarbonates containing iodophenyl carbonate are:
1. polycarbonates having a MW of from 3000 to 40,000 containing iodophenyl carbonate terminal groups,
2. polycarbonates of non-halogenated chain terminators having a MW of from 10,000 to 40,000 and containing diphenol-bis-iodophenyl carbonates,
3. polycarbonates of non-halogenated chain terminators having a MW of from 10,000 to 40,000 and containing bis-iodophenyl carbonate, and
4. mixtures of the polycarbonates according to 1) and the polycarbonates of non-halogenated diphenols and of non-halogenated chain terminators according to 2, or 3, variants 1, 2, 3 and 4 each having iodine concentrations of from 0.1 wt. % to 20 wt. %.
Special mouldings within the scope of the present invention are especially mouldings for medical applications, such as tubes or joint parts, and toys for children such as building bricks.
For the medical field and for children's toys, materials are sought which are as transparent as possible and have good mechanics, and which can be detected in the body in the course of X-ray examinations. Commercial moulding compositions based on polycarbonates are not suitable for that purpose, since their contrast in the X-ray image is too low. A material which is used for that purpose is, for example, PVC, whose plasticiser content is undesirable in the medical field and whose mechanical properties do not satisfy requirements. Known iodine-containing polymers also have only unsatisfactory mechanical properties and can be produced only with difficulty.
The object was, therefore, to develop moulding compositions which have good contrast in X-ray examinations while having good mechanical properties and high transparency and a glass temperature that is markedly greater than 100° C.
The major advantage of the mouldings according to the invention is that they have an improved X-ray contrast and are thus readily detectable and, accordingly, can be used successfully on the one hand in specific operations and on the other hand for remedying accidents caused by children swallowing toys.
U.S. Pat. No. 3,409,704 describes polycarbonates having iodophenyls as the terminal group (column 2, lines 60 ff).
U.S. Pat. No. 3,382,207 discloses iodine-containing diphenyl carbonates and their addition to polycarbonates.
According to DE-A 17 20 812, iodine-containing phenols are known as chain terminators for polycarbonates. See also the corresponding GB-B 11 63 816.
According to U.S. Pat. No. 3,535,300, iodine-containing compounds are known as additives to polycarbonates (column 4, line 64; column 5, line 43).
The use according to the invention and, accordingly, also the object cannot be taken from that prior art.
Polycarbonates according to 1) having {overscore (M)}
w
of from 3000 to 40,000 and containing iodophenyl carbonate terminal groups are preferably those having terminal groups of formula (I)
wherein
R
1
to R
3
represent H, optionally branched C
1
-C
18
-alkyl, Cl, Br or I, with the proviso that at least one of the radicals R
1
, R
2
and R
3
represents I.
Preferred terminal groups are 4-iodophenyl carbonate and 2,4,6-triiodophenyl carbonate terminal groups.
Suitable diphenols for the preparation of the polycarbonates according to 1) are those of formula (II)
HO—Z—OH (II)
wherein
Z represents a divalent aromatic radical having from 6 to 30 carbon atoms.
Preferred diphenols are 1,1-bis-(4-hydroxyphenyl)-1-phenylethane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 2,2-bis-(4-hydroxyphenyl)-propane and 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane.
The polycarbonates according to 1) are either known or can be prepared by processes known from the literature; see, for example, the prior art cited above.
Preferred diphenol-bis-iodophenyl carbonates according to 2) are those of formula (III)
wherein
R
1
, R
2
and R
3
are as defined for formulae (I) and (II).
Preferred bis-iodophenyl carbonates according to 3) are those of formula (IV)
wherein
R
1
, R
2
and R
3
are as defined for formula (I).
The diphenol-bis-iodophenyl carbonates according to 2) and the iodophenyl carbonates according to 3) are either known from the literature or can be prepared by processes known from the literature.
The conventional polycarbonates of non-halogenated diphenols and of non-halogenated chain terminators used as mixing partners in 2), 3) and 4) are likewise known or can be prepared by processes known from the literature (see, for example, U.S. Pat. No. 3,028,365).
The polycarbonates containing iodophenyl carbonate according to variants 1), 2), 3) or 4) to be used in accordance with the invention are to have iodine concentrations of from 0.1 wt. % to 20 wt. %, preferably from 1 wt. % to 15 wt. %, especially from 3 wt. % to 10 wt. %, in each case based on the total weight of variants 1), 2), 3) or 4).
Examples of the iodophenols (Ia)
are 2-/3- or 4-iodophenol, 2-/3- or 4-iodo-6-methylphenol, 4- or 6-iodo-3-methylphenol, 2- or 6-iodo-4-methylphenol, 4,5-diiodo-2-methylphenol, 4,6-diiodo-2-methylphenol, 4,5diiodo-3-methylphenol, 4,6-diiodo-3-methylphenol, 2,4,6-triiodophenol, preferably 4-iodophenol and 2,4,6-triiodophenol.
The iodophenols are compounds which are obtainable in the chemicals trade or are accessible in organic syntheses from aromatic intermediates, optionally via diazonium salts. They can be used individually or in combinations, optionally also in combinations with conventional chain terminators such as phenol, p-tert-butylphenol, hexylphenol, isooctylphenol or nonylphenol.
Both the polycarbonates containing iodophenyl carbonate according to 1) and the conventional polycarbonates used as mixing partners according to 2), 3) and 4) can be linear or branched in a known manner.
Suitable branching agents are triphenols, trimesic acid (trichloride), cyanuric acid trichloride and 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
Both the polycarbonates containing iodophenyl carbonate according to 1) and the conventional polycarbonates used as mixing partners according to 2), 3) and 4) can be provided with additives customary for polycarbonates, such as thermostabilisers, mould release agents, stabilisers against &ggr; and &bgr; radiation, and antistatics.
The polycarbonate variations 1), 2), 3) or 4) to be used in accordance with the invention are processed to mouldings in a known manner.
In the Examples which follow, &eegr;
rel
is measured in dichloromethane at 25° C. and a concentration of 0.5 wt. %.
REFERENCES:
patent: 3028365 (1962-04-01), Schnell et al.
patent: 3382207 (1968-05-01), Jaquiss
patent: 3409704 (1968-11-01), Bailey
patent: 3535300 (1970-10-01), Gable
patent: 1720812 (1971-07-01), None
patent: 92/04392 (1992-03-01), None
Alberts Heinrich
Bodiger Michael
Ebert Wolfgang
Eckel Thomas
Wittmann Dieter
Bayer Aktiengesellschaft
Boykin Terressa M.
Gil Joseph C.
Preis Aron
LandOfFree
Use of polycarbonates containing iodine phenyl carbonate for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of polycarbonates containing iodine phenyl carbonate for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of polycarbonates containing iodine phenyl carbonate for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2572094