Use of physiologically balanced, ionized, acidic solution in...

Drug – bio-affecting and body treating compositions – Topical body preparation containing solid synthetic organic... – Ophthalmic preparation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S078060, C424S078070, C424S613000, C424S661000

Reexamination Certificate

active

06426066

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a physiologically balanced, ionized, acidic solution that is useful in wound healing and other applications in which antimicrobial properties are desirable. Preferably, the ionized solution is prepared by electrolysis, i.e. it is an electrolyzed solution. In addition, the invention relates to a methodology of using the solution of the invention, including a specialized bandage which may be used in combination with the solution or with other solutions or topically applied materials.
2. Brief Description of the Background Art
Various electrolyzed acidic salt solutions, their properties, and their uses have been described in the art. Several examples are provided below.
U.S. Pat. No. 5,622,848, issued Apr. 22, 1997, to Morrow, discloses a microbicidal solution for in vivo and in vitro treatment of microbial infections. The solution comprises an electrolyzed saline containing regulated amounts of ozone and active chlorine species, wherein the ozone content is between about 5 and 100 mg/L, and the active chlorine species content is between about 5 and 300 ppm. The active chlorine species comprises free chlorine, hypochlorous acid, and the hypochlorite ion, as measured by a chlorine selective electrode. The solution is prepared by subjecting a 1% or less saline solution to electrolysis under conditions sufficient to produce the desired active ingredients. The solution is preferably utilized at an isotonic saline concentration, and may be adjusted with hypertonic saline. The solution may be used for in vitro treatment of infected whole blood, blood cells, or plasma to reduce contamination, and may be used in the treatment of fluids infected with HIV, hepatitis, and other viral, bacterial, and fungal agents. The solution may also be administered to warm-blooded animals, including humans, by intravenous injection or other modes, for similar purposes.
PCT publication No. WO9934652, published Jul. 8, 1999, of Marais, discloses the use of an electrochemically activated sodium hypochlorite-free irrigating medium to reduce the proliferation of bacteria and other microorganisms during tooth root canal. Anion-and cation-containing solutions are obtained by electrolysis of a 10% aqueous NaCl solution. The anion-containing solution is used at a pH of about 2-7 and an oxidation reduction potential (ORP) of about +1170 mV; the cation-containing solution is used at a pH of about 7-13 and an ORP of about −980 mV.
X. W. Li et al. (
Chinese J. Epidem
., 17(2), pp. 95-98, 1996) reported a preliminary study of the microbicidal effect of electrolyzed oxidizing water. Electrolyzed oxidizing water was shown to completely kill
Staphylococcus aureus
and
Escherichia coli
within 15 seconds, while 10 minutes were required to completely kill all spores of
Bacillus subtilus var. niger
. Thirty seconds were needed to destroy the antigenicity of HBsAg. The oxidation reduction potential and pH values of electrolyzed oxidizing water were not significantly changed when stored for three weeks at room temperature under air-tight, light-free conditions.
A. Iwasawa et al. (
J. Jap. Assoc. Infec. Diseases
, 70(9), pp. 915-922, 1996) evaluated the bactericidal effect of acidic electrolyzed water on
S. aureus, S. epidermidis
, and
Pseudomonas aeruginosa
. At pH 5.0 to approximately 6.0, three bacterial strains were killed soon after being exposed to the acidic water containing 50 mg/L chloride, and the chloride concentration reportedly did not change after standing open for 6 hours. At pH 2.67 to approximately 2.80, the bactericidal effects were observed at a chloride concentration of 5 mg/L, and 80% of the chloride reportedly remained after standing open for 6 hours.
H. Tanaka et al. (
J. Hosp. Infect
., 34(1), pp. 43-49, 1996) reported on the antimicrobial activity of superoxidized water. Superoxdized water is described as “a strong acidic and colorless solution with a high oxidation-reduction potential. The solution is prepared by mixing a small amount of salt with tap water in an electrolyser”. The antimicrobial activity of superoxidized water was tested against methicillin-sensitive
S. aureus, Serratia marcescens, E. coli, P. aeruginosa
, and
Burkholderia cepacia
. The number of bacteria was reduced below the detection limit following incubation in superoxidized water for 10 seconds. The bactericidal activity of superoxidized water was similar to that of 80% ethanol, but superior to that of 0.1% chlorhexidine and 0.02% povidone iodine.
Y. Inoue et al. (
Artificial Organs
, 21(1), pp. 28-31, 1997) reported on the use of electrolyzed strong acid aqueous solution lavage in the treatment of peritonitis and intraperitoneal abscess. Peritoneal and abscess ravages were performed using an electrolyzed strong acid aqueous solution to treat seven patients with peritonitis and intraperitoneal abscesses. The period of irrigation in the seven patients ranged from 9 to 12 days, with conversion to microorganism negative state observed within 3 to 7 days. The authors describe the solution as being “acidic water that contains active oxygen and active chlorine and possesses a redox potential”
S. Sekiya et al. (
Artificial Organs
. 21(1), pp. 32-38, 1997) reported on the use of electrolyzed strong acid solutions in the treatment of infectious skin defects and ulcers using. The clinically applied therapy of electrolyzed strong acid aqueous solutions were found to be effective in the treatment of infectious ulcers. Sekiya et al. describe the strong aqueous solution (ESAAS) as being “generated by electrolyzing water and a small quantity of salt with a cation transfer filter.”
H. Hayashi et al. (
Artificial Organs
, 21(1), pp. 39-42, 1997) reported on the use of electrolyzed strong acid aqueous solutions (ESAAS) in the treatment of mediastinitis following cardiovascular surgery. Hayashi et al. described ESAAS as being “produced by electrolyzing sodium chloride solution. ( . . . ) ESAAS is produced by electrolyzing the sodium chloride solution using an ion-exchange membrane that separates the positive and negative electrodes. A small amount of sodium chloride is added to the water to facilitate electrolysis and increase the concentration of dissolved chloride.” The mediastinal wound was left open and irrigated with ESAAS one to three times daily until the infection was eradicated. Satisfactory growth of granulation tissue was observed in all patients treated, with no evidence of adverse effects attributable to ESAAS.
N. Tanaka et al. (
Artificial Organs
, 23(4), pp. 303-309, April 1999) reported on the use of electrolyzed strong acid aqueous solutions to clean and disinfect hemodialysis equipment. The solutions were found to directly inactivate bacterial endotoxins, and proved to be more economical than the conventional disinfecting method. The “electrolyzed strong acid aqueous solutions are disclosed to be “strongly acidic water which is made by electrolyzing tap water containing 50-1000 ppm salt (NaCl >99% pure) in a cell partitioned by a polyester diaphragm. It has an acidity of 2.3-2.7 pH, more than 1,000 mV in oxidation-reduction potential and 10-50 ppm in available: chlorine.”
J. B. Selkon et al. (
J. Hosp. Infec
., 41(1), pp. 59-70, January 1999) evaluated the antimicrobial activity of a new superoxidized water, STERILOX® (Sterilox Medical Limited, 85 E Milton Park, Abingdon, Oxon OX14 4RY, UK) for the disinfection of endoscopes. This superoxidized water is described as being “generated at the point of use by passing a saline-solution over coated titanium electrodes at 9 amps. The product generated has a pH of 5.0-6.5 and an oxidation reduction potential of >950 mV.” The antimicrobial activity of STERILOX® was tested against
Mycobacterium tuberculosis, M. avium
-
intracellulare, M. chelonae, E. coli
(including type 0157),
Enterococcus faecalis, P. aeruginosa, B. subtilus var. niger
spores, methicillin-resistant
S. aureus, Candida albicans
, poliovirus type 2, and human immunodeficiency virus HIV-1. Under clean conditions, fre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of physiologically balanced, ionized, acidic solution in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of physiologically balanced, ionized, acidic solution in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of physiologically balanced, ionized, acidic solution in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.