Use of natural EGFR inhibitors to prevent side effects due...

Drug – bio-affecting and body treating compositions – Plant material or plant extract of undetermined constitution... – Containing or obtained from leguminosae

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S059000, C424S401000, C514S859000

Reexamination Certificate

active

06638543

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the use of EGF receptor inhibitors, especially those occuring naturally in produce, foodstuffs, and the like, such as the isoflavinoid genistein, for preventing unwanted side effects when retinoids are used topically for treating humans.
2. The State of the Art
Topical retinoid administration has been used to treat a wide variety of dermatological ailments. For example, acne vulgaris has been treated with all-trans retinoic acid (tretinoin), sold under the well-known brand name Retin-A (from Janssen Pharmaceuticals), and the lesser known brand name Avita (from Penederm); oral 13-cis retinoic acid (isotretinoin; sold under the brand name Accutane for oral administration) has been used for severe cases of acne. 9-cis retinoic acid (alitretinoin) has been used topically to treat cutaneous lesions of AIDS-related Kaposi's sarcoma (Panretin brand gel, from Ligand Pharmaceuticals), and systemically to treat chronic eczema and renal cancer. Synthetic retinoids that have been approved for use against acne and psoriasis include adapalene (sold under the brand Differin) and tazarotene (sold under the brand name Tazorac), respectively. Psoriasis also has been treated with the trimethylmethoxyphenyl analogue of retinoic acid ethyl ester (etretinate; sold under the brand names Soriatane (acetretin), and formerly Tegison (etretinate)). Retinoids have also been used for treating other kinds of acne (such as cystic acne and acne rosacea) and various keratinization disorders (such as, ichthyoses (such as lamellar ichthyosis, ichthyosis vulgaris), pityriasis rubra pilaris, and Darier's disease). Retinoids have also been used for skin cancer and chemotheraphy of precancerous lesions and chemoprophylaxis (such as for basal cell and squamous cell carcinomas and keratoacanthoma). Retinoids have also been used for treating such skin conditions as warts, hyperkaratotic eczema of the hands and feet, and cutaneous sarcoidosis. In addition, retinoids have been used for treating photoaged skin, with compositions such as sold under the brand name Renova. Thus, retinoids are widely used both topically and systemically (orally) for a wide variety of conditions.
The present inventors and those working with them have invented other uses for retinoids, including preventing photoaging of human skin (e.g., U.S. Pat. Nos. 5,837,224, 6,130,254, and application No. 615218, filed Jul. 13, 2000), preventing and reversing chronological aging of human skin (e.g., application No. 28,435, filed Feb. 24, 1998), treating post-inflammatory hyperpigmentation in black skin (e.g., U.S. Pat. Nos. 5,750,570 and 6,017,960), preventing UV-induced loss of collagen biosynthesis (e.g., application No. 285,860, filed Apr. 2, 1999), prevention of UV-induced functional vitamin A deficiency (e.g., application No. 418,413, filed Oct. 14 1999), preventing scarring and inflammation due to acne (e.g., 576,597, filed May 22, 2000). The disclosures of these patents and applications are incorporated herein by reference.
While those trained in the use of retinoids are cognizant of toxicity issues, much more common and predictable are common side effects, such as erythema (redness), scaling, burning, and/or pruritus (itching), especially when retinoids are used long term. E.g., J W Fluhr et al., “Tolerance profile of retinol, retinaldehyde and retinoic acid under maximized and long-term clinical conditions”, Dermatology 1999; 199 Suppl 1:57-60.
Protein tyrosine kinases are involved in regulating critical functions in mammalian cells (e.g., cell growth, cell death, inflammation, and so on). There are two classes of protein tyrosine kinases: receptor protein tyrosine kinases and non-receptor protein tyrosine kinases. Many growth factor receptors on cell surfaces have intrinsic protein tyrosine kinase activity (i.e., the receptor protein kinases), so that when the growth factor binds to its receptor on the cell surface, it stimulates the intracellular protein tyrosine kinase activity. This intrinsic activation initiates a signal transduction cascade that typically results in cell growth and survival (e.g., effects expected from growth factors).
EGFR (Epidermal Growth Factor Receptor) is a transmembrane protein that includes a bound protein tyrosine kinase (PTK) in the intracellular or cytoplasmic portion, and hence the EGFR has “intrinsic” protein tyrosine kinase activity. After EGF binds to the extracellular portion of the EGFR, the intracellular portion having the PTK moiety can be activated by phosphorylation with ATP (adenosine triphosphate), releasing ADP in the process. When the PTK enzyme portion of the EGFR is activated, it acts on its substrate, which is another EGFR (if one is nearby). (Depending on the particular receptor, there may be a few receptors or there may be thousands of receptors in a given cell's membrane.) The activated EGFR activates an adjacent EGFR by phosphorylating its cytoplasmic portion (which contains the bound PTK) with the ATP. The phosphorylated EGFR (EGF-R-{circle around (P)}) with the active PTK enzyme catalyzes various reactions that result in nuclear signalling, up-regulating or down-regulating various genes, with concommitant effects on the cell. While this activation is occurring, the first EGFR bound to the EGF may then bind to another ATP and activate the cytoplasmic portion of yet another EGFR, increasing the nuclear signalling. Thus, as EGFRs are activated, they can activate other EGFRs so that the entire signal is amplified.
In one mode of action, it is known that retinoids cause an elevation in the heparin-binding epidermal growth factor (HB-EGF; one member of the EGF family that binds the EGFR), which, through the nuclear signalling just discussed, causes hyperplasia and subsequent scaling and peeling of the skin, a side effect common to many who use retinoids topically. (E.g., J-H Xiao et al., “Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors”, The EMBO J., Vol. 18, No. 6, pp. 1539-1548 (1999).) When a pharmacological retinoid is applied topically to skin or taken orally, the EGFR (epidermal growth factor receptor) is activated by the release of HB-EGF. The EGFRs are located on cells in the epidermis, and their activation causes the cells in the lower epidermis to proliferate excessively. The excessively proliferating cells cause upward pressure on the outward migrating cells, resulting in an excessive number of cells arriving at the surface of the skin. This hyperproliferation is manifest as peeling, scaling, and/or dryness of the skin. Retinoids have other modes of action, but this mode is believed to be responsible for many of the side effects that deter patients from continued use of retinoid therapy or decrease the benefit they receive (subjectively trading the discomfort of one problem for a lesser problem). Other than terminating therapy, topically applied emollients, moisturizers, humectants, and the like are the typical adjuncts to topical retinoid therapy for mitigating these detrimental side effects. In human skin organ culture it was shown that synthetic EGFR tyrosine kinase inhibitors blocked actions of HB-EGF induced by micromolar concentrations of retinoic acid. (S. W. Stoll and J. T. Elder, “Retinoid regulation of heparin-binding EGF-like growth factor gene expression in human keratinocytes and skin”, Exp. Dermatol., 1998: 7:391-397.) More particularly, it was shown that after exposure to a retinoid, the HB-EGF increased, but the EGFR tyrosine kinase inhibitors prevented this increase from causing hyperplasia.
The medical arts have been focussing on the EGFR in connection with anti-cancer therapies because links have been shown between the EGFR subfamily of tyrosine kinases and human cancers, including that various tumors express EGFR. Thus, researchers have been looking towards tyrosine kinase inhibitors as anticancer agents because of the existence of EGFR expression by tumor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of natural EGFR inhibitors to prevent side effects due... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of natural EGFR inhibitors to prevent side effects due..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of natural EGFR inhibitors to prevent side effects due... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157824

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.