Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...
Reissue Patent
2002-10-07
2004-02-03
Foelak, Morton (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From reactant having at least one -n=c=x group as well as...
C528S129000, C521S129000
Reissue Patent
active
RE038415
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to the use of N-(aminoalkyl)pyrrolidines as catalysts for the preparation of products by the polyisocyanate addition process. These catalysts may be used as a replacement for or in combination with known urethane catalysts, such as 1,4-diazabicyclo[2.2.2]octane (DABCO), for the preparation of rigid or flexible polyurethane foams and other polyurethane products. In the context of the present invention, the term “polyurethane products” is intended to encompass all reaction products of polyisocyanates with compounds containing at least two isocyanate-reactive hydrogen atoms. That is, the term “polyurethane” is understood to encompass, for example, pure polyurethanes, polyurethane polyureas, or pure polyureas.
The rate of the reaction between isocyanate groups and compounds containing NCO-reactive hydrogen atoms is determined not only by the temperature of the starting products and their structure but particularly by the use of suitable catalysts. In practice, bases (for example, tertiary amines such as triethylamine) are used mainly as nucleophilic catalysts, whereas organometallic compounds (for example, tin carboxylates such as tin(II) octoate) are used mainly as electrophilic catalysts. The prior art processes are based on the joint use of Lewis acids and Lewis bases, which is normally characterized by synergistic effects. However, it is also known that amines are exclusively used as catalysts in a number of applications. However, only a few of the large number of known amine catalysts (cf. Ullmann, 4th Edition, and Kunststoffhandbuch, Vol. VII, Polyurethane, Hanser-Verlag, Munich (1983)) have hitherto been adopted for use on a wide scale, with 1,4-diazabicyclo[2.2.2]octane (DABCO), bis(2-dimethylaminoethyl) ether, triethylamine, dimethyl cyclohexylamine, dimethylethanolamine, dimethylbenzylamine, methylmorpholine, and ethylmorpholine being the most important. More particularly, of course, catalysts distinguished by high activity, economic production, and a broad range of applications are used. Another increasingly important consideration is the toxicological evaluation of the catalysts with regard to processing safety and odor emission. Many of the amine catalysts in use today, such as DABCO or triethylamine, may be regarded as unsatisfactory in this respect because of their high volatility and the relatively intensive amine odor that is carried over into the end product produced with such catalysts.
Amine catalysts containing an additional, isocyanate reactive group corresponding to the general formula
are described in German Offenlegungsschrift 2,116,535, which also mentions, inter alia, compounds in which the two substituents R are attached to each other to form 3- to 6-membered rings. The use of one representative member of this special class of compounds, namely N-(2-aminoethyl)aziridine, is illustrated by Examples 10 and 16-18 of the German patent. In the Examples mentioned, this compound proved to be distinctly poorer than the corresponding acyclic compounds with regard to the density, strength, and elasticity of the foams prepared (Example 10) and particularly with regard to activity (Examples 16 to 18).
It has now surprisingly been found that certain pyrrolidine derivatives may be used advantageously as catalysts for the preparation of polyurethanes. Compared with the above-mentioned N-(2-aminoethyl)aziridine and cyclic compounds other than those having 5-membered rings, the compounds used in accordance with the invention have considerably greater activity that even surpasses that of the acyclic members disclosed in the above-cited German patent specification. Another advantage is the faint odor and low volatility of compounds in which the isocyanate-reactive groups are bound in the polymer, which leads to distinctly reduced odor emission in the preparation of polyurethane products. In addition, other advantages have been observed, including, for example, ease of handling (because the pyrrolidines preferably used are liquid), good curing behavior, and, not least, the very simple preparation of the compounds.
SUMMARY OF THE INVENTION
According to the present invention relates to a process for preparing polyisocyanate polyaddition products comprising reacting
(a) polyisocyanates with
(b) relatively high molecular weight compounds containing at least two isocyanate-reactive hydrogen atoms and
(c) chain-extending agents, in the presence of
(d) N-(aminoalkyl)pyrrolidine catalysts corresponding to formula (1)
in which
R is a C
2-12
alkylene group (optionally containing O or N atoms but not isocyanate-reactive groups) and
R′ is hydrogen or a C
1-4
alkyl group,
(e) optionally, other known catalysts, and
(f) other known additives.
DETAILED DESCRIPTION OF THE INVENTION
The polyisocyanate reaction products prepared according to the present invention are preferably cellular plastics.
The catalysts used according to the invention are known compounds. The preferred catalysts are prepared, for example, by addition of pyrrolidine onto acrylonitrile, followed by reduction and, optionally, subsequent alkylation by known methods. The catalysts according to the invention are colorless to pale yellowish compounds, the preferred types being liquid, and are soluble in organic solvents and soluble or dispersible in water. The quantity of the catalysts is generally from about 0.01 to about 5% by weight, based on the isocyanate-reactive compound. Although more than the above-mentioned quantity may be used, no advantage is gained.
Preferred compounds are catalysts corresponding to general formula (I) in which R is a 1,3-propylene group and R′ is hydrogen or C
1-4
alkyl. Suitable catalysts according to the invention include, for example, N-(2-aminoethyl)pyrrolidine, N-(2-(methylamino)ethyl)pyrrolidine, N-(3-aminopropyl)-pyrrolidine, N-(3-methylamino)propyl)pyrrolidine, N-(3-(ethylamino)propyl)pyrrolidine, N-(3-(propylamino)propyl)pyrrolidine, N-(4-aminobutyl)pyrrolidine, N-(3-amino-2-methylpropyl)-pyrrolidine, and N-(3-methylamino-2-methylpropyl)pyrrolidine. Preferred catalysts include N-(3-aminopropyl)pyrrolidine, N-(3-methylamino)propyl)prrolidine, N-(3-(ethylamino)propyl)-pyrrolidine, and N-(3-(propylamino)propyl)pyrrolidine, with N-(3-aminopropyl)pyrrolidine and N-(3-(methylamino)propyl)-pyrrolidine being particularly preferred.
The isocyanate-reactive compounds which are used as component (b) in the process accordin9 to the invention are those used in previously known processes for the preparation of polyurethanes and are described, for example, in Kunststoffhandbuch, Vol. VII, Polyurethane, Hansen-Verlag, Munich (1963) or in Houben-Weyl, Makromolekulare Stoffe Vol. E 20. The isocyanate reactive compounds have a molecular weight M
n
of 3000-10000, preferably 3000-6000, e.g. polyether-polyols such as Bayfit®3973 or Bayfit®3963 (commercial product Bayer AG).
The compounds containing NCO groups used as component (a) in the process of the invention are the same compounds used in previously known processes and are described, for example, in Kunststoffhandbuch, Vol. VII, Polyurethane, Hansen-Verlag, Munich (1983) or in Houben-Weyl, Makromolekulare Stoffe, Vol. E20.
When carrying out the process according to the invention, the substituted pyrrolidines are used in the same way as the previously known catalysts. For example, the catalyst may be used in its liquid form or may be dissolved in a polyol or a suitable solvent. The catalyst may be used at any temperature - or under other conditions - either alone or in combination with other known catalysts that are suitable for the preparation of polyurethanes. Suitable other catalysts include organic or inorganic tin compounds or other organometallic compounds; tertiary amines, alkanolamines, cyclic amines, polyamines, and the like; alkali metal compounds; and other co-catalysts.
The catalysts according to the invention are preferably used in a quantity of at least 50% by weight, based on the total quantity of catalyst used.
The process according to the invention
Scholz Uwe
Weider Richard
Bayer Aktiengesellschaft
Brown N. Denise
Foelak Morton
Gil Joseph C.
Whalen Lyndanne M.
LandOfFree
Use of N-(aminoalkyl) pyrrolidines as catalysts for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of N-(aminoalkyl) pyrrolidines as catalysts for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of N-(aminoalkyl) pyrrolidines as catalysts for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3294653