Use of multipotent neural stem cells and their progeny for...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S368000, C435S377000, C435S375000

Reexamination Certificate

active

06294346

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method for the in vitro culture and proliferation of multipotent neural stem cells, and to the use of these cells and their progeny as tissue grafts. In one aspect, this invention relates to a method for the isolation and in vitro perpetuation of large numbers of non-tumorigenic neural stem cell progeny which can be induced to differentiate and which can be used for neurotransplantation in the undifferentiated or differentiated state, into an animal to alleviate the symptoms of neurologic disease, neurodegeneration and central nervous system (CNS) trauma. In another aspect, this invention relates to a method of generating neural cells for the purposes of drug screening of putative therapeutic agents targeted at the nervous system. In another aspect, this invention also relates to a method of generating cells for autologous transplantation. In another aspect, the invention relates to a method for the in vivo proliferation and differentiation of the neural stem cell progeny in the host.
BACKGROUND OF THE INVENTION
The development of the mammalian central nervous system (CNS) begins in the early stage of fetal development and continues until the post-natal period. The mature mammalian CNS is composed of neuronal cells (neurons), and glial cells (astrocytes and oligodendrocytes).
The first step in neural development is cell birth, which is the precise temporal and spatial sequence in which stem cells and stem cell progeny (i.e daughter stem cells and progenitor cells) proliferate. Proliferating cells will give rise to neuroblasts, glioblasts and new stem cells.
The second step is a period of cell type differentiation and migration when undifferentiated progenitor cells differentiate into neuroblasts and gliolblasts which give rise to neurons and glial cells which migrate to their final positions. Cells which are derived from the neural tube give rise to neurons and glia of the CNS, while cells derived from the neural crest give rise to the cells of the peripheral nervous system (PNS). Certain factors present during development, such as nerve growth factor (NGF), promote the growth of neural cells. NGF is secreted by cells of the neural crest and stimulates the sprouting and growth of the neuronal axons.
The third step in development occurs when cells acquire specific phenotypic qualities, such as the expression of particular neurotransmitters. At this time, neurons also extend processes which synapse on their targets. Neurons are generated primarily during the fetal period, while oligodendrocytes and astrocytes are generated during the early post-natal period. By the late post-natal period, the CNS has its full complement of nerve cells.
The final step of CNS development is selective cell death, wherein the degeneration and death of specific cells, fibers and synaptic connections “fine-tune” the complex circuitry of the nervous system. This “fine-tuning” continues throughout the life of the host. Later in life, selective degeneration due to aging, infection and other unknown etiologies can lead to neurodegenerative diseases.
Unlike many other cells found in different tissues, the differentiated cells of the adult mammalian CNS have little or no ability to enter the mitotic cycle and generate new nerve cells. While it is believed that there is a limited and slow turnover of astrocytes (Korr et al., J. Comp. Neurol., 150:169, 1971) and that progenitors for oligodendrocytes (Wolsqijk and Noble, Development, 105:386, 1989) are present, the generation of new neurons does not normally occur.
Neurogenesis, the generation of new neurons, is complete early in the postnatal period. However, the synaptic connections involved in neural circuits are continuously altered throughout the life of the individual, due to synaptic plasticity and cell death. A few mammalian species (e.g. rats) exhibit the limited ability to generate new neurons in restricted adult brain regions such as the dentate gyrus and olfactory bulb (Kaplan, J. Comp. Neurol., 195:323, 1981; Bayer, N.Y. Acad. Sci., 457:163, 1985). However, this does not apply to all mammals; and the generation of new CNS cells in adult primates does not occur (Rakic, Science, 227:1054, 1985). This inability to produce new nerve cells in most mammals (and especially primates) may be advantageous for long-term memory retention; however, it is a distinct disadvantage when the need to replace lost neuronal cells arises due to injury or disease.
The low turnover of cells in the mammalian CNS together with the inability of the adult mammalian CNS to generate new neuronal cells in response to the loss of cells following injury or disease has led to the assumption that the adult mammalian CNS does not contain multipotent neural stem cells.
The critical identifying feature of a stem cell is its ability to exhibit self-renewal or to generate more of itself. The simplest definition of a stem cell would be a cell with the capacity for self-maintenance. A more stringent (but still simplistic) definition of a stem cell is provided by Potten and Loeffler (Development, 110:1001, 1990) who have defined stem cells as “undifferentiated cells capable of a) proliferation, b) self-maintenance, c) the production of a large number of differentiated functional progeny, d) regenerating the tissue after injury, and e) a flexibility in the use of these options.”
The role of stem cells is to replace cells that are lost by natural cell death, injury or disease. The presence of stem cells in a particular type of tissue usually correlates with tissues that have a high turnover of cells. However, this correlation may not always hold as stem cells are thought to be present in tissues (e.g., liver [Travis, Science, 259:1829, 1993]) that do not have a high turnover of cells.
CNS disorders encompass numerous afflictions such as neurodegenerative diseases (e.g. Alzheimer's and Parkinson's), acute brain injury (e.g. stroke, head injury, cerebral palsy) and a large number of CNS dysfunctions (e.g. depression, epilepsy, and schizophrenia). In recent years neurodegenerative disease has become an important concern due to the expanding elderly population which is at greatest risk for these disorders. These diseases, which include Alzheimer's Disease, Multiple Sclerosis (MS), Huntington's Disease, Amyotrophic Lateral Sclerosis, and Parkinson's Disease, have been linked to the degeneration of neural cells in particular locations of the CNS, leading to the inability of these cells or the brain region to carry out their intended function.
In addition to neurodegenerative diseases, acute brain injuries often result in the loss of neural cells, the inappropriate functioning of the affected brain region, and subsequent behavior abnormalities. Probably the largest area of CNS dysfunction (with respect to the number of affected people) is not characterized by a loss of neural cells but rather by an abnormal functioning of existing neural cells. This may be due to inappropriate firing of neurons, or the abnormal synthesis, release, and processing of neurotransmitters. These dysfunctions may be the result of well studied and characterized disorders such as depression and epilepsy, or less understood disorders such as neurosis and psychosis.
Degeneration in a brain region known as the basal ganglia can lead to diseases with various cognitive and motor symptoms, depending on the exact location. The basal ganglia consists of many separate regions, including the striatum (which consists of the caudate and putamen), the globus pallidus, the substantia nigra, substantia innominate, ventral pallidum, nucleus basalis of Meynert, ventral tegmental area and the subthalamic nucleus.
In the case of Alzheimer's Disease, there is a profound cellular degeneration of the forebrain and cerebral cortex. In addition, upon closer inspection, a localized degeneration in an area of the basal ganglia, the nucleus basalis of Meynert, appears to be selectively degenerated. This nucleus normally sends cholinergic projections to the cer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of multipotent neural stem cells and their progeny for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of multipotent neural stem cells and their progeny for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of multipotent neural stem cells and their progeny for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545613

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.