Use of mobile locating and power control for radio network...

Telecommunications – Radiotelephone system – Zoned or cellular telephone system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S067700, C455S522000, C455S067150

Reexamination Certificate

active

06442393

ABSTRACT:

BACKGROUND
The present invention is directed generally to radiocommunication systems and, more particularly, to techniques for identifying and mapping areas of poor signal quality in a CDMA radiocommunication system.
A mobile phone network conventionally consists of a plurality of base stations arranged in a pattern so as to define a plurality of overlapping cells which provide radiocommunication support in a geographic area. Base stations in the network are located so as to provide optimal coverage of the mobile phone service area. The transmission pattern of a geographic arrangement of network base stations typically looks like a honeycomb of cells. Each base station with omnidirectional transmission in the network serves a roughly circular area with a diameter ranging from a few hundred meters to several kilometers depending on population density. Additionally, base stations may have adaptive antennas that cover only narrow sectors, thus producing “sectored” cells instead of circular cells. The mobile phone network typically only has a specified number of frequencies available for use by mobile subscribers. Therefore, to maximize use of the specified number of frequencies while preventing interference between adjacent base stations, each base station supports different frequencies than its corresponding adjacent base stations. When a mobile subscriber moves to the edge of a cell associated with a current servicing base station the mobile subscriber can be “handed-off” to an adjacent base station so as to enable call quality and signal strength to be maintained at a predetermined level.
Traditionally, radio communication systems have employed either Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) to allocate access to available radio spectrum. Both methods attempt to ensure that no two potentially interfering signals occupy the same frequency at the same time. For example, FDMA assigns different signals to different frequencies. TDMA assigns different signals to different timeslots on the same frequencies. TDMA methods reduce adjacent channel interference through the use of synchronization circuitry which gates the reception of information to prescribed time intervals.
In contrast, Code Division Multiple Access (CDMA) systems allow interfering signals to share the same frequency at the same time. More specifically, CDMA systems “spread” signals across a common communication carrier by multiplying each signal with a unique spreading code sequence. The signals are then scrambled and transmitted on the common carrier in overlapping fashion as a composite signal. Each mobile receiver correlates the composite signal with a respective unique despreading code sequence, and thereby extracts the signal addressed to it.
The signals which are not addressed to a mobile receiver in CDMA assume the role of interference. To achieve reliable reception of a signal, the bit energy to interference ratio (Eb/Io) should be above a prescribed threshold for each mobile station. The bit energy of the signal is therefore adjusted to maintain the appropriate Eb/Io threshold level. However, increasing the energy associated with one mobile station increases the interference associated with other nearby mobile stations. As such, the radio communication system must strike a balance between the requirements of all mobile stations sharing the same common carrier. A steady state condition is reached when the Eb/Io requirements for all mobile stations within a given radio communication system are satisfied. Generally speaking, the balanced steady state may be achieved by transmitting to each mobile station using power levels which are neither too high nor too low. Transmitting messages at unnecessarily high levels raises interference experienced at each mobile receiver, and limits the number of signals which may be successfully communicated on the common radio frequency channel (e.g. reduces system capacity).
In a conventional CDMA system such as, for example, a CDMA system using the IS-95 standard, power control commands are transmitted from the base station to a mobile station so that a constant bit energy to interference ratio is maintained for each received signal at the base station. To accomplish this reverse link power control, the base station sends a power control bit 800 times a second over the forward fundamental channel to the mobile station. This power control bit informs the mobile station whether the mobile station should raise or lower its transmission power level so as to maintain a constant Eb/Io at the base station. A transmitted power control bit with a value of 0 indicates that the mobile station should raise power. A transmitted power control bit with a value of 1 indicates that the mobile station should lower power. In response to the transmitted power control bit, the mobile station adjusts the transmission power by 1 db increments on the reverse link. The base station then measures the Eb/Io ratio of the power adjusted reverse link signal and repeats the above process in an iterative fashion until the Eb/Io ratio reaches the specified level.
Measurement of the Eb/Io ratio provides an indication of either poor network coverage or high network interference conditions in a CDMA system. If poor network coverage exists at a given location of a mobile station then bit energy Eb will decrease (I will not change if the number of users remains the same) and thus the Eb/Io ratio will likely decrease. Furthermore, if high interference exists at a given location, the interference Io will increase and thus the Eb/Io ratio will likely decrease. An increase in the interference Io generally implies that the number of mobiles has increased, since Io is composed of the normalized interference from mobile stations in the same cell, the interference from mobile stations in adjacent cells, and the background noise. The component of the interference due to same cell mobile stations will generally predominate.
Poor network coverage can occur due to a number of conditions including poor network planning, localized terrain features, shadowing due to obstacles (e.g., buildings, trees) in the path of the mobile station-base station connection, and “holes” in network coverage due to the phenomenon of “cell breathing.” “Cell breathing” occurs when a mobile on the edge of a cell transmits close to its maximum power to overcome interference from other mobiles in the cell and to communicate with the base station. When new mobiles enter the cell and are allocated a channel they will raise the overall interference level. Thus, the mobile station at the cell edge will have to raise its power further to maintain the required signal to interference ratio at the base station. However, due to maximum power limitations, the mobile station at the cell edge is unable to raise its power any further. Thus, mobiles in this situation are either handed off to another cell or another frequency or the call is dropped. The net effect of this process is that the cell border effectively shrinks. This cell shrinking due to high load can cause coverage holes between cells.
High interference conditions can occur when there are a large number of users in a cell in a CDMA network. These large number of users produce an unstable state where any single user must increase power to overcome interference from surrounding users. The increase in power of any single user causes an increase in the overall level of interference, which further causes other users to also raise their power. This process can result in a rapidly escalating state of congestion. High interference conditions can be managed by the network by balancing the requirements of all mobile stations sharing the same, common radio frequency channel, as already discussed above. However, high data rate services that require the transmission of bursty packets of data over the air can cause localized interference conditions that cannot be adequately managed by the network.
Often, as noted above, high interference or poor coverage conditions can persist i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of mobile locating and power control for radio network... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of mobile locating and power control for radio network..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of mobile locating and power control for radio network... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2883537

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.