Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1998-04-07
2002-06-25
Travers, Russel (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S261100
Reexamination Certificate
active
06410546
ABSTRACT:
In 1983, the etiological cause of AIDS was determined to be the human immunodeficiency virus (HIV). In 1985, it was reported that the synthetic nucleoside 3′-azido-3′-deoxythymidine (AZT) inhibits the replication of human immunodeficiency virus. Since then, a number of other synthetic nucleosides, including 2′,3′-dideoxyinosine (DDI), 2′,3′-dideoxycytidine (DDC), and 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T), have been proven to be effective against HIV. After cellular phosphorylation to the 5′-triphosphate by cellular kinases, these synthetic nucleosides are incorporated into a growing strand of viral DNA, causing chain termination due to the absence of the 3′-hydroxyl group. They can also inhibit the viral enzyme reverse transcriptase.
The success of various synthetic nucleosides in inhibiting the replication of HIV in vivo or in vitro has led a number of researchers to design and test nucleosides that substitute a heteroatom for the carbon atom at the 3′-position of the nucleoside. European Patent Application Publication No. 0 337 713 and U.S. Pat. No. 5,041,449, assigned to BioChem Pharma, Inc., disclose racemic 2-substituted-4-substituted-1,3-dioxolanes that exhibit antiviral activity. U.S. Pat. No. 5,047,407 and European Patent Application No. 0 382 526, also assigned to BioChem Pharma, Inc., disclose that a number of racemic 2-substituted-5-substituted-1,3-oxathiolane nucleosides have antiviral activity, and specifically report that the racemic mixture of 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane (referred to below as BCH-189) has approximately the same activity against HIV as AZT, with little toxicity. The (−)-enantiomer of the racemate BCH-189, known as 3TC, which is covered by U.S. Pat. No. 5,539,116 to Liotta et al., is currently sold for the treatment of HIV in combination with AZT in humans in the U.S.
It has also been disclosed that cis-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (“FTC”) has potent HIV activity. Schinazi, et al., “Selective Inhibition of Human Immunodeficiency Viruses by Racemates and Enantiomers of cis-5-Fluoro-1-[2-(Hydroxymethyl)-1,3-Oxathiolane-5-yl]Cytosine”
Antimicrobial Agents and Chemotherapy
, November 1992, pp. 2423-2431. See also U.S. Pat. No. 5,210,085; WO 91/11186, and WO 92/14743.
Another compound that exhibits efficacy against HIV both in vitro and in vivo is 6-benzyl-1-(ethoxymethyl)-5-isopropyluracil, which is also known as MKC-442.
MKC-442 is described, for example, in U.S. Pat. No. 5,461,060.
MKC-442, although a nucleoside analogue, functions as a non-nucleoside reverse transcriptase inhibitor. It is considered an allosteric inhibitor because it appears to exert its activity by binding to an “allosteric position”, i.e., one other than the binding site, of the enzyme. Preclinical tests suggest that MKC-442 may possess characteristics that address several of the therapeutic challenges of HIV. When tested in cell culture assay systems against wild-type (drug-sensitive) and several mutant strains of HIV known to be resistant to established non-nucleoside reverse transcriptase inhibitors, MKC-442 retained much of its ability to inhibit HIV replication. In these studies, MKC-442 displayed greater potency than nevirapine against wild-type and mutant strains of HIV. Preclinical studies of MKC-442 in two drug combinations with AZT or with DDI and in three drug combinations with AZT and saquinavir have demonstrated synergistic inhibition of HIV replication.
Studies in animals suggest a favorable safety and pharmacokinetic profile for MKC-442. Animal pharmacokinetic analyses showed good oral bioavailability and excellent penetration into the central nervous system, a significant site of HIV replication that is poorly penetrated by many currently marketed anti-HIV drugs. In rats, for example, the concentration of MKC-442 in the brain was 100% of that seen in the plasma.
A Phase I study evaluated the pharmacokinetics and tolerance of single escalating doses of MKC-442 in HIV-infected volunteers. The compound was generally well tolerated, with only a few participants experiencing minor adverse effects at the higher dose levels. In the groups receiving higher doses, concentrations of the drug in the plasma reached levels mich higher than the levels required to suppress 90% of the virus in culture.
Preliminary data from a Phase I/II double-blind, placebo controlled trial designed to evaluate the safety and efficacy of repeated multiple oral doses of MKC-442 in HIV-infected patients has now also been evaluated. A total of 49 patients were treated with MKC-442 for up to two months. Doses ranging from 100 mg to 1000 mg twice a day were given to groups of six to eight patients at each dosage level. At the highest doses tested (705 mg and 1000 mg twice a day), the viral load was reduced by an average of 96% in all patients after one week. This reduction was mostly sustained at two weeks whereafter it was followed by a gradual increase in viral load from the nadir toward baseline levels. A single point mutation at position 13 of the reverse transcriptase that may be associated with resistance was found in the virus obtained from some patients. In over 308 patient-weeks of drug exposure, MKC-442 was well tolerated.
It is known that over a period of time, agents such as MKC-442 that are active against HIV induce mutations in the virus which reduce the efficacy of the drug. There is a need to improve the durability of antiviral efficacy produced by antiretroviral drugs, including MKC-442, by decreasing the rate at which such mutations arise. Further, although MKC-442 exhibits a favorable pharmacokinetic and biodistribution profile, there is always a desire to improve these parameters. There is also a need to decrease the metabolism of the drug, which can lead to an increase in the plasma concentration of or exposure to MKC-442.
U.S. Pat. No. 5,604,209, issued on Feb. 18, 1997 to Ubasawa et al., and assigned to Mitsubishi Chemical Corporation, discloses that certain 6-benzyl-1-ethoxymethyl-5-substituted uracil derivatives, including MKC-442, and certain 2′,3′-dideoxyribonucleosides, including 2′,3′-dideoxyinosine (DDI), 3′-azido-3′-deoxythymidine (AZT), AZT triphosphate, and 2′,3′-dideoxycytidine (DDC), exhibit a synergistic effect against HIV.
Japanese Patent Application No. 9-18384 filed on Jan. 31, 1997, by Mitsubishi Chemical Corporation, discloses a method for the treatment of HIV that includes the administration of a 6-benzyl-1-ethoxymethyl-5-substituted uracil derivative, including MKC-442, in combination with two or more nucleoside-type reverse transcriptase inhibitors or their esters, and in particular, those selected from the group consisting of AZT, 2′,3′-dideoxy-3′-thiacytidine (3TC), PMEA (9-(2-phosphonylmethoxyethyl) adenine (Gilead); PMPA: (R)-9-(2-phosphonyl-methoxypropyl)adenine); 1592U89 succinate ((1S,4R)-4-[2-amino-6-cyclopropyl-amino)-9H-purin-9-yl]-2-cyclopentene-1-methanol succinate); 2′,3′-dideoxyinosine (DDI); and 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T), and esters thereof.
In light of the strong activity of MKC-442 against HIV, it is an object of the present invention to provide a method and composition that includes MKC-442 for the treatment of patients infected with HIV that exhibits advantageous or improved pharmacokinetic, biodistribution, metabolic, resistance or other parameters over administration of MKC-442 alone.
It is also an object of the invention to improve the efficacy of MKC-442 during short periods of administration and over extended time periods.
It is yet another object of the present invention to provide a method and composition for the treatment of patients infected with HIV in which MKC-442 is administered in combination or alternation with a second compound that acts synergistically with MKC-442 against the virus.
It is still another object of the present invention to provi
Barry David W.
Borroto-Esoda Katyna
Furman Phillip A.
Moxham Cary P.
King & Spalding
Knowles, Esq. Sherry M.
Sullivan, Esq. Clark G.
Travers Russel
Triangle Pharmaceuticals, Inc.
LandOfFree
Use of MKC-442 in combination with other antiviral agents does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of MKC-442 in combination with other antiviral agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of MKC-442 in combination with other antiviral agents will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2959834