Use of microparticles combined with submicron oil-in-water...

Drug – bio-affecting and body treating compositions – Nonspecific immunoeffector – per se ; or nonspecific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S070110, C424S070190, C424S204100, C424S228100, C424S278100, C424S283100, C435S004000, C435S005000, C435S006120

Reexamination Certificate

active

06458370

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to vaccine compositions. In particular, the invention relates to the use of biodegradable microparticles including entrapped or adsorbed antigens, in combination with submicron oil-in-water emulsions.
BACKGROUND OF THE INVENTION
Numerous vaccine formulations which include attenuated pathogens or subunit protein antigens, have been developed. Conventional vaccine compositions often include immunological adjuvants to enhance immune responses. For example, depot adjuvants are frequently used which adsorb and/or precipitate administered antigens and which can retain the antigen at the injection site. Typical depot adjuvants include aluminum compounds and water-in-oil emulsions. However, depot adjuvants, although increasing antigenicity, often provoke severe persistent local reactions, such as granulomas, abscesses and scarring, when injected subcutaneously or intramuscularly. Other adjuvants, such as lipopolysacharrides, can elicit pyrogenic responses upon injection and/or Reiter's symptoms (influenza-like symptoms, generalized joint discomfort and sometimes anterior uveitis, arthritis and urethritis). Saponins, such as
Quillaja saponaria,
have also been used as immunological adjuvants in vaccine compositions against a variety of diseases.
More particularly, Complete Freund's adjuvant (CFA) is a powerful immunostimulatory agent that has been successfully used with many antigens on an experimental basis. CFA includes three components: a mineral oil, an emulsifying agent, and killed mycobacteria, such as
Mycobacterium tuberculosis.
Aqueous antigen solutions are mixed with these components to create a water-in-oil emulsion. Although effective as an adjuvant, CFA causes severe side effects primarily due to the presence of the mycobacterial component, including pain, abscess formation and fever. CFA, therefore, is not used in human and veterinary vaccines.
Incomplete Freund's adjuvant (IFA) is similar to CFA but does not include the bacterial component. IFA, while not approved for use in the United States, has been used elsewhere in human vaccines for influenza and polio and in veterinary vaccines for rabies, canine distemper and foot-and-mouth disease. However, evidence indicates that both the oil and emulsifier used in IFA can cause tumors in mice.
Muramyl dipeptide (MDP) has been found to be the minimal unit of the mycobacterial cell wall complex that generates the adjuvant activity observed with CFA. See, e.g., Ellouz et al.,
Biochem. Biophys. Res. Commun.
(1974) 59:1317. Several synthetic analogs of MDP have been generated that exhibit a wide range of adjuvant potency and side effects. For a review of these analogs, see, Chedid et al.,
Prog. Allergy
(1978) 25:63. Representative analogs of MDP include threonyl derivatives of MDP (Byars et al.,
Vaccine
(1987) 5:223), n-butyl derivatives of MDP (Chedid et al.,
Infect. Immun.
35:417), and a lipophilic derivative of a muramyl tripeptide (Gisler et al., in
Immunomodulations of Microbial Products and Related Synthetic Compounds
(1981) Y. Yamamura and S. Kotani, eds., Excerpta Medica, Amsterdam, p. 167).
One lipophilic derivative of MDP is N-acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2-(1′-2′-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE). This muramyl tripeptide includes phospholipid tails that allow association of the hydrophobic portion of the molecule with a lipid environment while the muramyl peptide portion associates with the aqueous environment. Thus, the MTP-PE itself is able to act as an emulsifying agent to generate stable oil-in-water emulsions. MTP-PE has been used in an emulsion of 4% squalene with 0.008% TWEEN 80®, termed MTP-PE-LO (low oil), to deliver the herpes simplex virus gD antigen with effective results (Sanchez-Pescador et al.,
J. Immunol.
(1988) 141:1720-1727), albeit poor physical stability. Recently, MF59, a safe, highly immunogenic, submicron oil-in-water emulsion which contains 4-5% w/v squalene, 0.5% w/v TWEEN 80®, 0.5% SPAN 85®, and optionally, varying amounts of MTP-PE, has been developed for use in vaccine compositions. See, e.g., Ott et al., “MF59—Design and Evaluation of a Safe and Potent Adjuvant for Human Vaccines” in
Vaccine Design: The Subunit and Adjuvant Approach
(Powell, M. F. and Newman, M. J. eds.) Plenum Press, New York, 1995, pp. 277-296.
Despite the presence of such adjuvants, conventional vaccines often fail to provide adequate protection against the targeted pathogen. In this regard, there is growing evidence that vaccination against intracellular pathogens, such as a number of viruses, should target both the cellular and humoral arms of the immune system.
More particularly, cytotoxic T-lymphocytes (CTLs) play an important role in cell-mediated immune defense against intracellular pathogens such as viruses and tumor-specific antigens produced by malignant cells. CTLs mediate cytotoxicity of virally infected cells by recognizing viral determinants in conjunction with class I MHC molecules displayed by the infected cells. Cytoplasmic expression of proteins is a prerequisite for class I MHC processing and presentation of antigenic peptides to CTLs. However, immunization with killed or attenuated viruses often fails to produce the CTLs necessary to curb intracellular infection. Furthermore, conventional vaccination techniques against viruses displaying marked genetic heterogeneity and/or rapid mutation rates that facilitate selection of immune escape variants, such as HIV or influenza, are problematic. Accordingly, alternative techniques for vaccination have been developed.
Particulate carriers with adsorbed or entrapped antigens have been used in an attempt to elicit adequate immune responses. Such carriers present multiple copies of a selected antigen to the immune system and promote trapping and retention of antigens in local lymph nodes. The particles can be phagocytosed by macrophages and can enhance antigen presentation through cytokine release. Examples of particulate carriers include those derived from polymethyl methacrylate polymers, as well as microparticles derived from poly(lactides) and poly(lactide-co-glycolides), known as PLG. Polymethyl methacrylate polymers are nondegradable while PLG particles biodegrade by random nonenzymatic hydrolysis of ester bonds to lactic and glycolic acids which are excreted along normal metabolic pathways.
Recent studies have shown that PLG microparticles with entrapped antigens are able to elicit cell-mediated immunity. For example, microencapsulated human immunodeficiency virus (HIV) gp120 has been shown to induce HIV-specific CD4+ and CD8+ T-cell responses in mice (Moore et al.,
Vaccine
(1995) 13:1741-1749). Similarly, microparticle-encapsulated ovalbumin has been shown to be capable of priming cellular immune responses in vivo and can induce mucosal IgA responses when administered orally (O'Hagan et al.,
Vaccine
(1993) 11:149-154). Additionally, both antibody and T-cell responses have been induced in mice vaccinated with a PLG-entrapped
Mycobacterium tuberculosis
antigen (Vordermeier et al.,
Vaccine
(1995) 13:1576-1582). Antigen-specific CTL responses have also been induced in mice using a microencapsulated short synthetic peptide from the circumsporozoite protein of
Plasmodium berghei.
However, the use of microparticles with entrapped or adsorbed antigen, in combination with submicron oil-in-water emulsions, has not heretofore been described.
DISCLOSURE OF THE INVENTION
The present invention is based on the surprising and unexpected discovery that the use of biodegradable microparticles, such as those derived from a poly(&agr;-hydroxy acid), and including entrapped or adsorbed antigen, in combination with submicron oil-in-water emulsions, serves to enhance the immunogenicity of the antigen. The use of such combinations provides a safe and effective approach for enhancing the immunogenicity of a wide variety of antigens.
Accordingly, in one embodiment, the invention is directed to a composition

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of microparticles combined with submicron oil-in-water... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of microparticles combined with submicron oil-in-water..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of microparticles combined with submicron oil-in-water... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.