Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Post imaging process – finishing – or perfecting composition...
Reexamination Certificate
1999-08-17
2001-03-27
Goodrow, John (Department: 1753)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Post imaging process, finishing, or perfecting composition...
C430S106100
Reexamination Certificate
active
06207335
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention lies within the technical field of charge control agents in toners and developers for electrophotographic recording processes, in powders and powder coating materials for surface coating, and in electret materials, especially in electret fibers, and in separation processes.
In electrophotographic recording processes a latent charge image is produced on a photoconductor. This latent charge image is developed by applying an electrostatically charged toner which is then transferred to, for example, paper, textiles, foils or plastic and is fixed by means, for example, of pressure, radiation, heat or the action of solvent. Typical toners are one- or two-component powder toners (also known as one- or two-component developers); also used are speciality toners, such as magnetic toners, liquid toners or polymerization toners, for example. By polymerization toners are meant those toners which are formed by, for example, suspension polymerization (condensation) or emulsion polymerization and lead to improved particle properties in the toner. Also meant are those toners produced basically in nonaqueous dispersions.
One measure of the quality of a toner is its specific charge q/m (charge per unit mass). In addition to the sign and level of the electrostatic charge, the principal, decisive quality criteria are the rapid attainment of the desired charge level and the constancy of this charge over an extended activation period. In addition to this, the insensitivity of the toner to climatic effects such as temperature and atmospheric humidity is a further important criterion for its suitability.
Both positively and negatively chargeable toners are used in copiers and laser printers, depending on the type of process and type of apparatus.
To obtain electrophotographic toners or developers having either a positive or negative charge, it is common to add charge control agents. Since the charge of toner binders is in general heavily dependent on the activation period, the function of a charge control agent is, on the one hand, to set the sign and level of the toner charge and, on the other hand, to counteract the charge drift of the toner binder and to provide for constancy of the toner charge.
Charge control agents which are not able to prevent the toner or developer from showing a high charge drift (ageing) during a prolonged period of use, and which even cause the toner or developer to undergo charge inversion, are hence unsuitable for practical use.
Another important practical requirement is that the charge control agents should have sufficient thermal stability and good dispersibility. Typical temperatures at which charge control agents are incorporated into the toner resins, when using kneading apparatus or extruders, are between 100° C. and 200° C. Accordingly, thermal stability at 200° C. is of great advantage. It is also important for the thermal stability to be ensured over a relatively long period (about 30 minutes) and in a variety of binder systems. This is significant because matrix effects occur again and again and lead to the premature decomposition of the charge control agent in the toner resin, causing the toner resin to turn dark yellow or dark brown and the charge control effect to be wholly or partly lost. Typical toner binders are addition polymerization, polyaddition and polycondensation resins, such as styrene, styrene-acrylate, styrene-butadiene, acrylate, polyester and phenol-epoxy resins, and also cycloolefin copolymers, individually or in combination, which may also include further components, examples being colorants, such as dyes, pigments, waxes or flow assistants, or may have these components added subsequently, such as highly disperse silicas.
Apart from their use in electrophotographic toners and developers, charge control agents may also be used to improve the electrostatic charge of powders and coating materials, especially in triboelectrically or electrokinetically sprayed powder coating materials as are used to coat surfaces of articles made from, for example, metal, wood, plastic, glass, ceramic, concrete, textile material, paper or rubber. Powder coating technology is used, for example, when coating articles such as garden furniture, camping equipment, domestic appliances, vehicle parts, refrigerators and shelving and for coating workpieces of complex shape. The powder coating material, or the powder, receives its electrostatic charge, in general, by one of the two following methods:
In the case of the corona method, the powder coating material or powder is guided past a charged corona and is charged in the process; in the case of the triboelectric or electrokinetic method, the principle of frictional electricity is utilized.
The powder coating material or powder in the spray apparatus receives an electrostatic charge which is opposite to the charge of its friction partner, generally a hose or spray pipe made, for example, from polytetrafluoroethylene.
It is also possible to combine the two methods. Typical powder coating resins employed are epoxy resins, carboxyl- and hydroxyl-containing polyester resins, polyurethane resins and acrylic resins, together with the customary hardeners. Resin combinations are also used. For example, epoxy resins are frequently employed in combination with carboxyl- and hydroxyl-containing polyester resins.
The disadvantage of insufficient charging can be seen above all in triboelectrically or electrokinetically sprayed powders and powder coating materials which have been prepared using polyester resins, especially carboxyl-containing polyesters, or using so-called mixed powders, also referred to as hybrid powders. By mixed powders are meant powder coating materials whose resin base consists of a combination of epoxy resin and carboxyl-containing polyester resin. The mixed powders form the basis for the powder coating materials used most commonly in practice. Inadequate charging of the abovementioned powders and powder coating materials results in an inadequate deposition rate and inadequate throwing power on the workpiece to be coated. The term “throwing power” is a measure of the extent to which a powder or powder coating material is deposited on the workpiece to be coated, including its rear faces, cavities, fissures and, in particular, its inner edges and corners.
It has additionally been found that charge control agents are able to improve considerably the charging and the charge stability properties of the electret materials, especially electret fibers (DE-A43 21 289). Electret fibers have hitherto been described mainly in connection with the problem of filtering very fine dusts. The filter materials described differ both in respect of the materials of which the fibers consist and with regard to the manner in which the electrostatic charge is applied to the fibers. Typical electret materials are based on polyolefins, halogenated polyolefins, polyacrylates, polyacrylonitriles, polystyrenes or fluoropolymers, for example polyethylene, polypropylene, polytetrafluoroethylene and perfluorinated ethylene and propylene, or on polyesters, polycarbonates, polyamides, polyimides, polyether ketones, on polyarylene sulfides, especially polyphenylene sulfides, on polyacetals, cellulose esters, polyalkylene terephthalates, and mixtures thereof. Electret materials, especially electret fibers, can be used, for example, to filter (very fine) dusts. The electret materials can receive their charge in a variety of ways, for instance by corona or triboelectric charging.
It is additionally known that charge control agents can be used in electrostatic separation processes, especially in processes for the separation of polymers. For instance, using the example of the externally applied charge control agent trimethylphenylammonium tetraphenyl borate, Y. Higashiyama et al. (J. Electrostatics 30, (1993) 203-212) describe how polymers can be separated from one another for recycling purposes. Without charge control agents, the triboelectric charging characteristics of low-density polyethylene (LDPE)
Baur Ruediger
Macholdt Hans-Tobias
Michel Eduard
Clariant GmbH
Goodrow John
Hanf Scott E.
Jackson Susan S.
LandOfFree
Use of metal carboxylates and sulfonates as charge control... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of metal carboxylates and sulfonates as charge control..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of metal carboxylates and sulfonates as charge control... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545179