Use of interferon (IFN)-&agr;8 and -&agr;14 as vaccine...

Drug – bio-affecting and body treating compositions – Lymphokine – Interferon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S278100

Reexamination Certificate

active

06436391

ABSTRACT:

The present invention relates to the use of Interferon-&agr; subtypes, particularly IFN-&agr;
8
, and/or IFN-&agr;
1
, as adjuvants for vaccines. In addition, it relates to the use of these Interferon subtypes to stimulate proliferation of B lymphocytes.
Type I interferons (IFN) are a family of closely related glycoproteins containing many IFN-&agr; subtypes and one IFN-&bgr; subspecies. At least 23 different human IFN-&agr; subtypes have been identified by analysis of human cDNA libraries and by protein analysis of the IFNs produced by stimulated lymphoblastoid cells. The reasons for this heterogeneity are not yet known. Previous studies have suggested that all Type I IFNs bind to an identical receptor and therefore have identical effects. However a mutant cell line that responds only to IFN-&bgr; but not IFN-&agr; has been identified showing that these two IFN subspecies bind to a different receptor and may therefore have different effects. Studies on the transmembrane human IFN receptor have shown that if this receptor is transfected into murine cells the cells respond only to some IFN subtypes, showing that a second receptor component is required to allow cells to respond to IFN and that the murine equivalent of this component is able to distinguish between different IFN subtypes. Molecular analysis of the human Type I IFN receptor thus suggests that the receptor may be able to distinguish between different IFN subtypes.
A number of studies have compared the effects of different IFN-&agr; subtypes on the antiviral activities of human cell lines. Zoon et al (J. Biol. Chem. 267: 15210-16 (1992) studied IFNs that were obtained from HPLC purification of natural IFN and found no gross differences in their antiviral activities. However, Sperber et al,
J. Interferon. Res.
12 363-368 (1992) examined the effects of different recombinant IFN-&agr; subtypes on cells infected with the human immunodeficiency virus (HIV) and found marked differences in their antiviral properties. W)95/24212 disclosed that different IFN-&agr; subtypes were effective antiviral agents in different cell types. Thus, it is possible to target viral infections in say the liver by the use of particular subtypes, eg IFN-&agr;
8
.
B cells or B lymphocytes are a subset of lymphocytes found in secondary lymphoid organs as well as circulating in the blood. They are characterised by the possession of antigen-specific cell surfaceimmunoglobulin molecules of a single antigen-binding specificity which act as receptors for antigen. The interaction of antigen with the cell-surface immunoglobulin is in part responsible for subsequent proliferation of the B cells and their development into antibody-secreting plasma cells.
We have now found that B cell proliferation can be induced by certain IFN-&agr; subtypes. Thus, it is possible to stimulate a subject's immune response and in particular the subtypes can be used as adjuvants to increase the effectiveness of vaccines.
Thus, in a first aspect the present invention provides an adjuvant for a vaccine comprising an IFN-&agr; subtype. In particular the invention provides an adjuvant for a vaccine which comprises IFN-&agr;
8
and/or IFN-&agr;
14
.
The adjuvant of the present invention can be co-administered with a vaccine or could itself form part of the vaccine itself. Thus, in a second aspect the present invention provides a vaccine comprising at least one IFN-&agr; subtype, preferably IFN-&agr;
8
and/or IFN-&agr;
14
.
The skilled person will appreciate that the particular antigen or antigens which the vaccine comprises is/are not important. Due to the ability of particular IFN-&agr; subtypes to stimulate B cell proliferation they find general use as adjuvants and enable enhanced immune responses to be obtained upon vaccination.
In a third aspect the present invention provides a method of vaccinating a subject which comprises the step of co-administering to the subject an IFN-&agr; subtype. As already discussed herein, the co-administration can be separate or the IFN-&agr; subtype can be administered as part of the vaccine itself.
In a final aspect the present invention provides a method for stimulating proliferation of B cells which comprises the step of bringing one or more B cells into contact with at least one IFN-&agr; subtype, preferably IFN-&agr;
8
and/or IFN-&agr;
14
.
The invention will now be described by means of the following example which should not be construed as in any way limiting the invention.
The example refers to the FIGURE which shows proliferation of tonsillar B cells in response to anti-IgM and IFN-&agr; subtypes.


REFERENCES:
patent: 4414150 (1983-11-01), Goeddel
patent: 4820514 (1989-04-01), Cummins
patent: 5310729 (1994-05-01), Lernhardt
patent: 95/24212 (1995-09-01), None
Östlund, L., et al. Blood 67: 152-59, 1986.*
Evans, S.S., et al. J. Cell. Biol. 123 (6 Pt 2): 1889-98, 1993.*
Burke, F., et al. Hematol. Oncol. 11: 23-33, 1993.*
Imam, S.A., et al. Anticancer Res. 16: 1727-32, 1996.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of interferon (IFN)-&agr;8 and -&agr;14 as vaccine... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of interferon (IFN)-&agr;8 and -&agr;14 as vaccine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of interferon (IFN)-&agr;8 and -&agr;14 as vaccine... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2891667

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.