Use of indolenine-cyaninedisulphonic acid derivatives

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Antihalation or filter layer containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S510000, C430S517000, C430S944000, C430S592000, C430S495100, C430S581000, C430S583000, C430S585000, C430S588000

Reexamination Certificate

active

06261753

ABSTRACT:

The present invention relates to the use of indolenine-cyanine dyestuffs as infrared-absorbing agents in hydrophilic colloidal layers, specifically those in recording materials, in particular photographic recording materials, and to such materials for IR detection processes which furthermore comprise hydrophilic colloidal layers with such indolenine-cyanine dyestuffs, and new indolenine-cyanine dyestuffs.
It is known to use colloidal layers which comprise dyestuffs, including infrared-absorbing dyestuffs, in photographic recording materials, in particular those based on silver halide. Photographic recording materials in general have a multi-layer structure. The dyestuff-containing layers can be employed in various positions in the multi-layer material. The photosensitive colloidal layer or layers comprising silver halides can comprise dyestuffs directly. In this context, infrared sensitive materials based on silver halide comprise one or more colloidal layers having one or more infrared-absorbing dyestuffs as sensitizers. However, layers comprising dyestuffs, in particular also infrared-absorbing dye-stuffs, also function, for example, as auxiliary or filter layers.
For example, dyestuff-containing layers have the task, inter alia, of increasing the imaging sharpness of the recording materials. It is also known in this context to apply dyestuff-containing layers to the reverse of a photographic material to suppress halation effects caused by reflection of scattered light (antihalation layers).
It is furthermore also known that infrared-detecting apparatuses can advantageously be used for automatic process control or management, in particular also for automatic process control or management during the production and working or processing of recording materials. So that the material to be worked for example the recording material, is capable of interaction with the control unit, it must have a suitable infrared absorption. Control detectors which operate in the range from 850 to 950 nm, which requires a corresponding absorption, for example of the recording material in this range, are typically used. The desired secondary actions are triggered off according to whether the detection system, which can comprise, for example, an infrared laser, detects an absorption or no absorption in a certain range. Analogue detection coupling is also possible. It is furthermore known that IR-detecting apparatuses can advantageously be employed for recognition of IR-absorbing materials. Thus, for example, documents, securities, letters and the like can be marked or coded by application of one or more IR-absorbing layers over the entire material or on selected positions.
Dyestuffs which are suitable for the above purposes must have, in particular, suitable absorption characteristics. For use in photographic recording materials, the dyestuffs must be decolorized completely during the photographic wet processing process, and/or they must be readily washed out of the photographic material, so that the developed material displays no residual coloration after processing. Furthermore, no stain of the baths should occur.
It is known to use infrared-absorbing dyestuffs of the heptamethine-cyanine type with indolenine end groups, in particular for infrared-sensitive photographic silver halide materials (see, for example, U.S. Pat. No. 4,876,181; EP-A-445 627; Chem. Abstr. 112:169019e (1990); Chem. Abstr. 112:108465a (1990)). However, these dye-stuffs do not meet, or meet only in part, the requirements imposed. In particular, these indolenine-hepta-methine-cyanines have the disadvantage that, with all the proposed substitution patterns, they absorb in too short a wavelength, i.e. they are not capable of providing an adequate IR absorption in the range from 850 to 950 nm, which is important for IR detection purposes. In order to
(C
1
-C
6
)-Alkyl groups and (C
1
-C
4
)-alkyl groups can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, 3-methylbutyl or n-hexyl. The same applies if alkyl groups are substituted or occur as substituents, for example on phenyl groups or in alkoxy groups. n-Alkyl groups are preferred, particularly preferably (C
1
-C
3
)-n-alkyl groups, such as methyl, ethyl and n-propyl. Methyl is a very particularly preferred alkyl group.
Alkyl which is substituted by halogen or phenyl is, for example, benzyl, 1-phenylethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 2-fluoroethyl, 2-chloro-ethyl, 2-bromoethyl, 3-chloropropyl, 2-chloro-2-methyl-propyl, 4-chlorobutyl or 6-chlorohexyl.
A substituent on an alkyl group is preferably bonded to the terminal C atom of the alkyl group.
Substituted phenyl is preferably phenyl which is mono- or disubstituted by (C
1
-C
4
)-alkoxy, (C
1
-C
4
)-alkyl, halogen or (C
1
-C
4
)-alkoxycarbonyl. Monosubstituted phenyl can be substituted in the 2-, the 3- or the 4-position, and disubstituted phenyl can be substituted, for example, in the 2,3-, in the 3,4- or in the 3,5-position. Preferably, substituted phenyl is substituted in the 4-position.
Halogen is, in particular, fluorine, chlorine, bromine and iodine, chlorine being preferred, and (C
3
-C
7
)-cycloalkyl is, in particular, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
The sulphonate groups in the indolenine end groups of the dyestuffs of the general formula I can be in the 5- or the 6-position of the indole ring-system and can also be in different positions in the two end groups.
They are preferably in the 5-position of the indole ring-system. They are also preferably in the same position in the two end groups.
R
1
and R
2
are preferably hydrogen, (C
1
-C
4
)-alkyl, which can also be substituted by phenyl, or phenyl. R
1
and R
2
are particularly preferably (C
1
-C
3
)-n-alkyl, and furthermore benzyl, and very particularly preferably methyl. R
1
and R
2
also preferably have the same meaning.
R
3
is preferably hydrogen or (C
1
-C
4
)-alkyl, and furthermore (C
1
-C
4
)-alkyl, which is substituted by phenyl, phenyl, halogen or (C
3
-C
7
)-cycloalkyl. R
3
is particularly preferably hydrogen, (C
1
-C
3
)-n-alkyl, benzyl, phenyl or halogen, very particularly preferably hydrogen or methyl.
M

is, for example, a cation or cation equivalent of main group or sub-group elements, for example of the alkali metals lithium, sodium, potassium, rubidium and caesium, the alkaline earth metals magnesium, calcium, strontium and barium, or, for example, the transition metals zinc, nickel and the like, or is also the hydrogen ion or, for example, a substituted ammonium ion or the ammonium ion itself. Possible substituted ammonium ions are, for example, ammonium ions which contain one, two, a three or four identical or different radicals from the series consisting of alkyl, hydroxyalkyl, phenylalkyl and phenyl, the above comments applying to alkyl groups, and (C
1
-C
4
)-alkyl groups being preferred. Examples are the dimethyl-, the trimethylt, the triethyl-, the ethyldiiso-propyl-, the tetramethyl-, the tetraethyl-, the 2-hydroxyethyl-, the tris-(2-hydroxyethyl)-, the phenyltrimethyl-, the benzyltrimethyl-, the benzyltriethyl-, the diphenyldimethyl- or the tetraphenylammonium ion.
Cations M

are preferably monovalent cations, alkali metal cations, substituted ammonium ions and the ammonium ion itself as well as the hydrogen ion being particularly preferred. M

is very particularly preferably the sodium ion, the potassium ion, the ammonium ion, the triethylammonium ion and the hydrogen ion.
The dyestuff of the general formula I in which the two sulphonate groups are in the 5-positions of the two terminal indole systems and in which R
1
and R
2
are methyl and R
3
is hydrogen and M

is the sodium, potassium, ammonium or triethylammonium ion, preferably the sodium ion, is preferably employed according to the invention.
The dyestuffs of the general formula I which can be employed according to the invention can be obtained in a simple manner which is known per se, for example by reaction of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of indolenine-cyaninedisulphonic acid derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of indolenine-cyaninedisulphonic acid derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of indolenine-cyaninedisulphonic acid derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2533531

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.