Coating processes – Direct application of electrical – magnetic – wave – or... – Pretreatment of substrate or post-treatment of coated substrate
Reexamination Certificate
1999-06-16
2001-02-13
Padgett, Marianne (Department: 1762)
Coating processes
Direct application of electrical, magnetic, wave, or...
Pretreatment of substrate or post-treatment of coated substrate
C427S552000, C427S557000, C427S255310, C430S270110, C430S292000
Reexamination Certificate
active
06187390
ABSTRACT:
The present invention relates to the use of hydride-containing aluminum oxide for producing optically recognizable markings and inscriptions.
The present invention furthermore relates to a process for producing optically recognizable markings and inscriptions, and to the use of the marked or inscribed substrates marked by this process for information storage.
The clear marking of a wide variety of products is of growing importance in virtually all sectors of industry. Information such as serial numbers, use-by dates, bar codes and company logos have to be applied to a wide variety of materials. Conventional marking techniques, such as labeling, stamping, printing and embossing, are widespread.
However, non-contact marking using lasers, which permits extremely fast and flexible marking of substrates having planar or nonplanar surfaces, is of increasing importance. In this process, the laser-markable material can be applied to the surface of the article to be marked in the form of a film or, in particular if the article is made of plastic, it can be incorporated directly and then inscribed. The markings covered with plastic in this way are particularly durable and abrasion-resistant and can be produced using a laser through a color change of pigments.
Thus, DE-A-29 36 926 discloses incorporating carbon black or graphite into plastic and effecting decolorization by laser irradiation, producing markings. EP-A-400 305 describes copper (II) hydroxide phosphate or molybdenum (VI) oxide as plastic additives which are colorless in the visible wavelength region, but become a dark color on exposure to a laser. Finally, the marking agent used in U.S. Pat. No. 4,816,374 is antimony trioxide and that used in DE-A-44 15 802 is a mica pigment coated with antimony-doped tin dioxide.
However, the known marking agents are unsatisfactory in various respects. They either result in discoloration of the plastic even before the marking operation, i.e. are not colorless, or they contain undesired heavy metals.
It is an object of the present invention to overcome these deficiencies and to provide a marking agent having advantageous properties.
We have found that this object is achieved by the use of hydride-containing aluminum oxide for producing optically recognizable markings or inscriptions.
We have also found a process for producing optically recognizable markings or inscriptions, which comprises coating the hydride-containing aluminum oxide onto a substrate to be marked, or incorporating it into the substrate material, and converting the virtually colorless hydride-containing aluminum oxide into aluminum oxide containing black, metallic aluminum by specific exposure to an energy source.
Finally, we have found that the substrates marked or inscribed by this process can be used for information storage.
The hydride-containing aluminum oxide employed in accordance with the invention generally has a hydrogen content of from 15 to 100 atom-%, preferably from 30 to 70 atom-%, in each case based on aluminum, and is highly suitable for producing optically recognizable markings and inscriptions since it is virtually colorless or has a yellow to brown color, depending on the layer thickness present when applied in a film-like manner or on the particle dimensions in the case of a particulate form, but is always transparent and is converted into aluminum oxide containing gray to black, metallic aluminum on heating (generally at>400° C., in particular from 450 to 500° C.), this aluminum oxide generally having a content of metallic aluminum of from 15 to 100 mol %, preferably from 30 to 70 mol %, in each case based on Al
2
O
3
.
Through the action of the thermal energy, the aluminum-hydrogen bond is cleaved, hydrogen escapes, and aluminum particles are formed in a matrix of aluminum oxide (nanocomposite having an aluminum particle size of up to about 50 nm).
The aluminum particles are protected in the matrix against aging and corrosion and enable a durable, abrasion-resistant and high-contrast marking to be produced.
The size of these aluminum clusters is dependent on the duration of the energy supply and varies from 1 to 200 nm. The extent of these aluminum islands (and thus the degree of blackening) is correlated with the shift of the Al peak in the
27
Al NMR spectrum and can be monitored in this way and via transmission electron spectroscopy.
The hydride-containing aluminum oxide employed in accordance with the invention as marking agent can, as described in DE-A-195 29 241, which was not published before the priority date of the present application, be prepared by gas-phase decomposition of monoalkoxyaluminum dihydrides of the formula I
Al(OR)H
2
I
where R is C
3
-C
10
-alkyl or C
5
-C
8
-cycloalkyl, under inert conditions at from 250 to 400° C.
Particularly suitable here are alkoxyaluminum dihydrides I which contain branched C
4
-C
8
-alkoxy radicals, such as tert-butoxyaluminum dihydride.
The alkoxyaluminum dihydrides I themselves can be prepared, as likewise disclosed in DE-A-195 29 241, which was not published before the priority date of the present application, by reacting aluminum hydride with the corresponding alcohol in a molar ratio of 1:1; aluminum hydride can be prepared in situ by reaction of an alkali metal aluminum hydride with aluminum chloride.
If the hydride-containing aluminum oxide is to be applied as a coherent film to a substrate to be marked, the substrate coating can advantageously be combined with preparation of the hydride-containing aluminum oxide by carrying out the gas-phase decomposition of the alkoxyaluminum dihydride I in the presence of the substrate.
Suitable substrates here are articles or workpieces having a wide variety of shapes and sizes which can be heated to the reaction temperature of from 250 to 400° C.
Examples of suitable substrate materials are metals, such as copper, silver, gold, chromium, nickel, cobalt, palladium, platinum and aluminum, metal alloys, for example steel, and semimetals, such as silicon, and nonmetallic materials, such as quartz and other types of glass.
The reactor employed for the coating should be matched to the particular substrate and its dimensions. Electroconductive metal tabs or foils a square centimeter in size can, as described, for example, in DE-A-195 29 241, which was not published before the priority date of the present application, and by M. Veith and S. Kneip in Journal of Materials Science Letters 13 (1994), pages 335-337, be coated with hydride-containing aluminum oxide in any desired layer thickness after being rendered inert under a reduced pressure of, generally, from 10
−4
mbar to atmospheric pressure, in a reaction tube made from Duran glass or quartz which is connected, on the inlet side, to a storage vessel containing the alkoxyaluminum dihydride I and heated to the desired evaporation temperature, and on the outlet side to a vacuum pump and which is located in a high-frequency induction field with the aid of which the substrate tabs are heated.
If the hydride-containing aluminum oxide is to be incorporated in the form of a powder into plastics, which is advantageously carried out after their shaping, where the conversion temperature of the hydride-containing aluminum oxide should naturally not be exceeded, or is to be used in coatings, paints or printing inks, the layer of hydride-containing aluminum oxide deposited on a suitable substrate during gas-phase decomposition can be scraped off or detached and comminuted to the desired particle size.
A further way of employing the hydride-containing aluminum oxide in particulate form both in plastics and in coatings, paints or printing inks comprises coating pigmentary substrates with the hydride-containing aluminum oxide. This can advantageously be carried out in a fluidized-bed reactor (for example described in EP-A-45 851) in which the pigment particles are heated to the reaction temperature with fluidization by means of an inert fluidization gas and into which the alkoxyaluminum dihydride I is transferred, with the aid of an inert carrier gas, from
Dausch Wilma M.
Faber Stefan
Fritscher Eckehard
Schmid Raimund
Seeger Oliver
BASF - Aktiengesellschaft
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Padgett Marianne
LandOfFree
Use of hydride-containing aluminum oxide for producing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of hydride-containing aluminum oxide for producing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of hydride-containing aluminum oxide for producing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2581358