Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – N-c doai
Patent
1994-02-23
1996-01-16
Shippen, Michael L.
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
N-c doai
514255, 514315, 514317, 514357, 514365, 514374, 514378, 514400, 514427, 514428, 514438, 514471, 514478, 514484, 514485, 514517, 514588, 514595, 514601, 514608, 514616, A61K 3127
Patent
active
054848113
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
Renin-inhibiting compounds are known for control of hypertension. Of particular interest herein are compounds useful as renin inhibiting agents.
BACKGROUND OF THE INVENTION
Renin is a proteolytic enzyme produced and secreted into the bloodstream by the juxtaglomerular cells of the kidney. In the bloodstream, renin cleaves a peptide bond in the serum protein angiotensinogen to produce a decapeptide known as angiotensin I. A second enzyme known as angiotensin converting enzyme, cleaves angiotensin I to produce the octapeptide known as angiotensin II. Angiotensin II is a potent pressor agent responsible for vasoconstriction and elevation of cardiovascular pressure. Attempts have been made to control hypertension by blocking the action of renin or by blocking the formation of angiotensin II in the body with inhibitors of angiotensin I converting enzyme.
Classes of compounds published as inhibitors of the action of renin on angiotensinogen include renin antibodies, pepstatin and its analogs, phospholipids, angiotensinogen analogs, pro-renin related analogs and peptide aldehydes.
A peptide isolated from actinomyces has been reported as an inhibitor of aspartyl proteases such as pepsin, cathepsin D and renin [Umezawa et al, in J. Antibot. (Tokyo), 23, 259-262 (1970)]. This peptide, known as pepstatin, was found to reduce blood pressure in vivo after the injection of hog renin into nephrectomized rats [Gross et al, Science, 175, 656 (1971)]. Pepstatin has the disadvantages of low solubility and of inhibiting acid proteases in addition to renin. Modified pepstatins have been synthesized in an attempt to increase the specificity for human renin over other physiologically important enzymes. While some degree of specificity has been achieved, this approach has led to rather high molecular weight hepta- and octapeptides [Boger et al, Nature, 303, 81 (1983)]. High molecular weight peptides are generally considered undesirable as drugs because gastrointestinal absorption is impaired and plasma stability is compromised.
Short peptide aldehydes have been reported as renin inhibitors [Kokubu et al, Biochim. Biophys. Res. Commun., 118, 929 (1984); Castro et al, FEBS Lett., 167, 273 (1984)]. Such compounds have a reactive C-terminal aldehyde group and would likely be unstable in vivo.
Other peptidyl compounds have been described as renin inhibitors. EP Appl. #128,762, published 18 Dec. 1984, describes dipeptide and tripepride glyco-containing compounds as renin inhibitors [also see Hanson et al, Biochm. Biophys. Res. Comm., 132, 155-161 (1985), 146, 959-963 (1987)]. EP Appl. #181,110, published 14 May 1986, describes dipeptide histidine derivatives as renin inhibitors. EP Appl. #186,977 published 9 Jul. 1986 describes renin-inhibiting compounds containing an alkynyl moiety, specifically a propargyl glycine moiety, attached to the main chain between the N-terminus and the C-terminus, such as N-[4(S)-[(N)-[bis(1-naphthylmethyl)acetyl]-DL-propargylglycylamino]-3(S)-h ydroxy-6-methylheptanoyl]-L-isoleucinol. EP Appl. #189,203, published 30 Jul. 1986, describes peptidyl-aminodiols as renin inhibitors. EP Appl. #200,406, published 10 Dec. 1986, describes alkylnaphthylmethylpropionyl-histidyl aminohydroxy alkanoates as renin inhibitors. EP Appl. #216,539, published 1 Apr. 1987, describes alkylnaphthylmethylpropionyl aminoacyl aminoalkanoate compounds as renin inhibitors orally administered for treatment of renin-associated hypertension. EP Appl. #229,667, published 22 Jul. 1987, describes acyl aaminoacyl aminodiol compounds having a piperazinylcarbonyl or an alkylaminoalkylcarbonyl terminal group at the N-amino acid terminus, such as 2(S)-{[(1-piperazinyl)carbonyl]-oxy]-3-phenylpropionyl}-Phe-His amide of 2(S) -amino-1-cyclohexyl-3(R), 4(S)-dihydroxy-6-methylheptane. PCT Application No. WO 87/04349, published 30 Jul. 1987, describes aminocarbonyl aminoacyl hydroxyether derivatives having an alkylamino-containing terminal substituent and which are described as having renin-inhibiting activity for use in tre
REFERENCES:
patent: 4902706 (1990-02-01), Hanson et al.
patent: 5032577 (1991-07-01), Fung et al.
patent: 5227401 (1993-07-01), Hanson
Umezawa et al, in J. Antibiot. (Tokyo), 23, 259-262 (1970).
Gross et al, Science, 175, 656 (1971).
Boger et al, Nature, 303, 81 (1983).
Kokubu et al, Biochm. Biophys. Res. Commun., 118, 929 (1984).
Castro et al, FEBS Lett., 167, 273 (1984).
Hanson et al, Biochm. Biophys. Res. Comm., 132, 155-161 (1985), 146, 959-963 (1987).
Baran John S.
Hanson Gunnar J.
G. D. Searle & Co.
Keane J. Timothy
Shippen Michael L.
LandOfFree
Use of ethynyl alanine amino diol compounds for treatment of oph does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of ethynyl alanine amino diol compounds for treatment of oph, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of ethynyl alanine amino diol compounds for treatment of oph will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-309696