Use of CNTF (ciliary neurotrophic factor) receptor...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C514S021800, C530S350000, C530S399000

Reexamination Certificate

active

06565869

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
The present application is the national stage under 35 U.S.C. 371 of PCT/IT97/00283, filed Nov. 18, 1997.
DESCRIPTION
The subject of the present invention is the use of molecules that activate the CNTF (ciliary neurotrophic factor) receptor—such as hCNTF (human CNTF) or mutants of hCNTF—as active principles in the formulation of pharmaceutical compositions suitable for the treatment of obesity and of related diseases. The term hCNTF mutant is intended to mean an amino acid sequence that can in theory be derived from hCNTF by substitution of one or more amino acids.
Obesity, which affects >30% of the adult population in the industrial world, is a major public health problem, since it is associated with type II diabetes, hypertension, hyperlipidemia and increased mortality rate. Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure. Treatment is generally unsuccessful due to the operation of mechanisms that restore adipose mass after both intentional or unintentional changes (1). The lipostasis theory postulates that the size of the body fat depot is regulated by a feedback loop, constituted by adipocyte-derived circulating molecules that act on the hypothalamus to decrease appetite and increase energy expenditure (2).
The recently identified 16-kilodalton plasma protein leptin (3) fulfills many of the criteria expected from such a lipostatic hormone. It is expressed in adipose tissue, and its plasma levels are highly correlated with body mass index in rodents and humans (4). The absence of leptin in obese (ob/ob) mutant mice leads to a massive increase in body fat, which can be reversed by systemic administration of the recombinant protein (5, 6, 7). However, human obesity does not appear to be due to deficient expression of leptin, since leptin mRNA and plasma protein levels were shown to be increased in obese versus lean subjects (4). Thus, obese humans may be insensitive to the lipostatic effect of leptin, possibly due to a defect at the level of leptin transport, leptin receptor activity, or post-receptorial signalling mechanisms (8).
There is thus a need in this specific field for new pharmacological agents capable of correcting obesity in people who are resistant to leptin.
Leptin resistance is a characteristic feature of the diabetic (db/db) mouse mutant, which expresses a truncated form of the leptin receptor lacking most of the intracytoplasmic domain (9). An animal model that more closely resembles human obesity is that of mice rendered obese by feeding a high-fat diet (DIO mice). Similar to human obese subjects, DIO mice have elevated plasma levels of leptin (4), suggesting that they are relatively insensitive to the weight-reducing effects of the hormone.
The present invention provides biologically active anti-obesity agents that can reverse obesity, as well as hyperglycemia and hyperinsulinemia associated therewith.
The subject of the present invention is therefore the use of substances that activate the CNTF receptor for the preparation of drugs for treatment of obesity and related diseases. These substances can be hCNTF (human ciliary neurotrophic factor; SEQ ID NO: 1) itself or mutants thereof (see for instance SEQ ID NOS:2 to 28). Good results have been obtained using the hCNTF mutant (Ser166Asp/Gln167His) hCNTF (10), which, from position 159 to position 178, has the following amino acid sequence (shown as SEQ ID NO: 5 in the annexed sequence listing):
Leu Lys Val Leu Gln Glu Leu Asp His Trp Thr Val Arg Ser Ile His Asp Leu Arg Phe [for sake of simplicity, this hCNTF mutant will be referred to hereinafter also as DH-CNTF]. For sake of simplicity, in the annexed sequence listing, it has been indicated only the portion from position 159 to position 178 of the mutants SEQ ID NOS: 2 to 22.
A further subject of the invention is the use of DNA coding for hCNTF or mutants thereof for the preparation of compositions for the treatment of obesity and diseases related thereto.
The present invention also has as its subject a drug for the treatment of obesity and the reduction of body weight, containing, as at least one of its active principles, hCNTF or a mutant thereof, and comprising a pharmaceutically acceptable vehicle. A pharmaceutically acceptable vehicle is intended to be a vehicle that is not dangerous for the patient, that does not degrade or deactivate the active principles or that does not interfere with the effects thereof. The preferred vehicle is a physiological saline solution, but other pharmaceutically acceptable vehicles can be used, and will easily be identified by those skilled in the art. In an embodiment that has shown good results hCNTF or mutants thereof can be used in combination with leptin: in this case the ratio wild type or mutant CNTF/leptin can be selected in the range 1:500 to 1:5, preferably 1:100 to 1:25.
hCNTF or hCNTF variants can be administered to patients in need of treatment in doses ranging from about 1 to 10,000 &mgr;g/kg body weight. A preferred dose is between 10 and 1000 &mgr;/kg body weight. A typical daily dose for an adult is between 1 and 100 mg. The necessary amount of active principle according to the invention can be administered in a single daily dose or in multiple doses throughout the day. The treatment regime can require administration for prolonged periods. The size of the dose administered must be determined by a physician and will depend on a number of factors, such as the nature and gravity of the disease, the age and state of health of the patient and the patient's tolerance to the drug itself.
In a specific embodiment, hCNTF or a mutant thereof can be used for treatment of obese patients by means of a short-term (1-2 weeks) daily administration, in order to obtain a rapid, significant decrease in body weight (5-10%), which can be maintained subsequently using an appropriate diet and/or physical exercise.
The active protein molecules can be formulated for parenteral, nasal, bronchial or transdermal administration. The pharmaceutical composition according to the present invention is preferably administered parenterally by means of an injection. In the preferred embodiment, parenteral administration is subcutaneous or intramuscular. Other effective methods of administration are intravenous injections, slow-release parenteral formulations, inhalant mists, or suppositories. In the slow-release formulation the primary solvent can be either of an aqueous or of a non-aqueous type. Furthermore, the vehicle can contain other pharmacologically acceptable excipients to maintain or modify the pH, viscosity, clarity, colour, sterility, stability, speed of dissolution or odor of the formulation. Similarly, the vehicle can also contain other pharmacologically acceptable excipients to modify or maintain the stability, speed of dissolution, release, or absorption of the active principle. These excipients are substances that are normally used to formulate doses for parenteral administration, both in the form of single doses and in the form of multiple doses.
As mentioned above, the preferred parenteral form of administration of the formulation according to the invention is subcutaneous or intramuscular. The most preferred form of parenteral administration is subcutaneous. To obtain the required daily dose of active principle, it is possible to resort to single or repeated subcutaneous or intramuscular injections. In a preferred embodiment of the invention, the dose of active principle is between 10 and 1000 &mgr;g/kg/day. For the treatment of obesity, it may be desirable to administer the active principle periodically. Periodic administration may take the form of monthly, bi-weekly, weekly, daily or hourly administration. The required frequency of administration will be apparent to those treating the patient on the basis of standard observational techniques.
It is also possible to consider oral administration of the pharmaceutical formulations according to the invention. In this case, the active pri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of CNTF (ciliary neurotrophic factor) receptor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of CNTF (ciliary neurotrophic factor) receptor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of CNTF (ciliary neurotrophic factor) receptor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.