Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing
Reexamination Certificate
2002-05-16
2004-04-20
Rotman, Alan L. (Department: 1625)
Organic compounds -- part of the class 532-570 series
Organic compounds
Oxygen containing
C568S876000, C568S886000, C568S891000, C568S896000, C568S897000
Reexamination Certificate
active
06723886
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention relates to a method and apparatus for converting synthesis gas, i.e., a mixture of carbon monoxide and hydrogen, to alcohols, particularly methanol. Particularly this invention relates to the use of a catalytic distillation reactor to achieve both reaction of the syngas and high net conversion. High net conversion occurs through use of multiple distillation stages within the reactor to achieve net conversion beyond the thermodynamic limit for a single stage.
BACKGROUND OF THE INVENTION
Large quantities of methane, the main component of natural gas, are available in many areas of the world. Methane can be used as a starting material for the production of alcohols. The conversion of methane to alcohols is typically carried out in two steps. In the first step methane is reformed with water or partially oxidized with oxygen to produce carbon monoxide and hydrogen (i.e., synthesis gas or syngas). In a second step, the syngas is converted to alcohols.
This second step, the preparation of alcohols from synthesis gas is well know in the art and is an example of carbon monoxide hydrogenation reactions. A variety of reactions can produce alcohols from synthesis gas. Methanol synthesis is a very common reaction. Further, the Fischer Tropsch reaction also produces alcohol by-products. The Fischer-Tropsch reaction conventionally involves the catalytic hydrogenation of carbon monoxide to produce a variety of products ranging from methane to higher alkanes. Catalysts for use in synthesis of these various products from synthesis usually depend on the desired product. Catalysts for the production of hydrocarbons usually contain a catalytically active metal from one of the Groups 8, 9, or 10 (in the New notation of the periodic table of the elements, which is followed throughout). Group 8, 9, and 10 metals have also been used in catalysts for the production of alcohols, catalysts for the production of alcohols. However, catalysts for the production of alcohols, particularly methanol, typically are copper-based, many containing copper in the form of an alloy, such as copper-zinc alloys and copper-rare earth alloys. The catalysts may additionally contain one or more promoters. Promoters for copper-zinc catalysts include Cr, Al, Mn, V, and Ag, among others.
Traditional methods of Fischer-Tropsch synthesis produce a range of products. In a methanol synthesis process, by-products may include hydrocarbons, higher alcohols, dimethyl ether, esters, ketones, and aldehydes. The range of hydrocarbons based on the carbon chain length of the hydrocarbon is discussed in U.S. Pat. No. 4,619,910, which is incorporated herein by reference. This well-known distribution is known as the Anderson-Schulz-Flory distribution. In general, the range of hydrocarbons produced in Fischer-Tropsch processes may be characterized by the Anderson-Schulz-Flory distribution with a suitable value for the parameter alpha, regardless of catalyst type.
Because of the range of products, typical systems that use the Fischer-Tropsch process provide a separation stage that follows the reaction stage. The separation stage is often one or more distillation columns. The distillation columns separate the product into fractions according to boiling point. The lighter products, having lower boiling points, will vaporize and pass to the overhead region of a distillation column, where they can be removed as one product stream. The heavier products, having higher boiling points, will condense and fall to the lower region of the distillation column, where they can be removed as a separate product stream. In addition, any one or more of the product streams having intermediate compositions can be removed from the column at intermediate points between the top and the bottom and may then be sent to other columns for further separation if desired. In this way, in a process for producing methanol, the methanol may be separated from undesired by-products.
Water can also be also produced during Fischer-Tropsch synthesis. Recent research indicates that water can deactivate a Fischer-Tropsch catalyst in certain circumstances. Rothaemel, Hanssen, Blekkan, Schanke and Holmen,
The Effect of Water on Cobalt Fischer
-
Tropsch Catalysts Studied by Steady
-
State Isotropic Transient, Kinetic Analysis,
38 Catalysts Today 79-84(1997); Schanke, Hilmen, Bergene, Kinnari, Rytter, Adnanes and Holmen,
Reoxidation and Deactivation of Supported Cobalt Fischer
-
Tropsch Catalysts
, Energy & Fuels, Vol. 10 No.4(July/August 1996) p. 867-872.
In addition, the catalytic methanol synthesis as with the Fischer-Tropsch synthesis, when practiced on a commercial scale, generates heat that must be removed from the reaction vessel. Methanol and Fischer-Tropsch synthesis reactions are highly exothermic, and reaction vessels must be designed with adequate heat exchange capacity. Large scale reactors, which potentially offer the economic advantages that come with higher volumes, must presently include, at significant cost, sufficient heat transfer equipment within the reactor to remove the heat generated during the reaction. The traditional method for doing this, and a method that may be used in the present invention, is to place heat removal equipment inside the reaction vessel. A typical internal heat removal arrangement comprises a system of tubes within one or more reaction chambers. The tubes contain a fluid such as water, or any other acceptable fluid, which acts as the heat exchange medium. In operation, the heat generated within the reaction chamber passes through the heat exchange tubes and heats the fluid therein. The heat exchange fluid is then pumped outside the reaction vessel, where the heat is released, preferably through a heat exchanger. This process can be carried out continuously, with the heat exchange fluid circulating through the reaction chamber. A shortcoming of the internal heat exchange process is that the internal heat exchange tubes occupy reactor space. Internal heat removal equipment may therefore decrease the reactor volume that is available for Fischer-Tropsch synthesis, thus limiting the capacities and efficiencies for a given reactor.
The conversion of natural gas to methanol via syngas is a widely used industrial process. Heat integration and recovery are desirable features of the process. For example, methanol is manufactured in large amounts due to its use in a variety of applications, including: a feedstock for other chemicals, fuel use, and other direct uses as a solvent, antifreeze, inhibitor, or substrate. Further, there is a wide range of more specific uses, as described below.
According to one application, methanol is used as a solvent in automobile windshield washer fluid and as a cosolvent in various formulations for paint and varnish removers. It is also used as a process solvent in chemical processes for extraction, washing, crystallization, and precipitation. For example, methanol is used as an “antisolvent” for precipitation of polyphenylene oxide after its polymerization. It should be pointed out here that there have been active studies in using the extracts of agricultural plants in medicine. Methanol is often used for the extraction. Methanol extracts of some plants show antibacterial activities. This provides a potential use of methanol in traditional medicine.
According to another application, methanol is used as antifreeze because it has a high freezing point depression ability. It depresses the freezing point of water by 54.5° C. for a 50-50 wt % methanol-water mixture. The largest antifreeze use of methanol is in the cooling system for internal combustion engines. However, the antifreeze market for methanol has been saturated. Its market share has been lost to ethylene glycol since 1960 because of the superior performance of the glycol.
According to yet another application, methanol finds some use as an inhibitor. It inhibits formaldehyde polymerization and is present in paraformaldehyde. Methanol can als
Allison Joe D.
Harkins Todd H.
Jack Doug S.
Wright Harold A.
Conley & Rose, P.C.
ConocoPhillips Company
Reyes Hector M.
Rotman Alan L.
LandOfFree
Use of catalytic distillation reactor for methanol synthesis does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of catalytic distillation reactor for methanol synthesis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of catalytic distillation reactor for methanol synthesis will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3227394