Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition
Reexamination Certificate
1998-12-16
2001-04-24
Alexander, Lyle A. (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Control element responsive to a sensed operating condition
C422S105000, C264S330000, C264S331110
Reexamination Certificate
active
06221316
ABSTRACT:
The invention relates to the use of blends of biodegradable polymers made from renewable raw materials for manufacturing carrier systems for analytical test procedures.
Carriers for immunological, enzymatic, chemical, or physical analysis procedures are manufactured from petrochemical plastics, mainly from polystyrene. Examples of such carrier systems, but which do not cover the full range of test systems, are micro well plates, test rods, test tubes, or test spheres. The plastics used are characterized by for their resistance to water and their selective affinity to organic substances. Where appropriate, the surfaces of the carriers are modified physically or chemically, so that binding of the organic substance is more selective. The organic substances which are bound selectively may be molecules that differ with regard both to their composition and to their size. The molecules may be polar or non-polar, and the size of molecules may vary from several hundred thousand Dalton to just a few hundred. For analysis the molecules are bonded adhesively or covalently by well-known procedures. Known organic substances that bind to the carrier matrix are proteins, peptides, saccharides or polynucleotides.
Plastics suitable for use as carriers usually are melted in injection moulding or other plastic processing machines, and then, as molten mass, formed into the required shape and cooled. Once solidified, optionally, following further surface treatments, the items are sold in large quantities to analytic laboratories. The carriers, such as micro titre plates, test rods, test tubes and test spheres, are used in these laboratories for chemical, enzymatic, physical, or immunological tests either immediately, or after surface treatment with chemical reagents. For reasons of reproducibility of the analytical results, or for reasons of hygiene, the carrier systems usually are used only once and then, optionally after being autoclave sterilised, thrown away. Because of the large number of analytical tests, problems arise with the disposal of the carrier systems used. For reasons of hygiene, and because of the very many different substances that may adhere to the carriers after their use in analysis procedures, the polymer materials cannot be re-used by melting and recycling in order to make new carriers. In the best case scenario the chemical energy stored in the polymers can be utilised by combustion. However, the waste materials usually have to be taken to landfill waste disposal sites some distance away, and disposed of at great expense. In addition, the polymers are manufactured from mineral oil derivatives. Disposal, whether by combustion or by depositing at landfill sites, thus destroys these resources which is contrary to the principle of sustainability. Therefore the task of the inventors was to find alternatives to prevent the accumulation of large quantities of plastic waste from analysis laboratories, and at the same time, to comply with the principle of sustainability.
Similar to the materials currently used for producing carriers the polyesters PHB (polyhydroxybutyrate), a polymer of the polyalcanoate group, and PLA (polylactate) both are water-resistant and can be moulded as thermoplasts. Both PHB and PLA are well-known polymers obtained from renewable resources. They usually are compounded (mixed, blended) for injection moulding with other substances such as plasticisers, dyes, nucleation agents, and/or other additives which are customary in polymer chemistry. PHB or PLA formulations usually are used to produce injection moulded articles for medical purposes or in the environmental and packaging industries. There are two main reasons for using PHB or PLA formulations to manufacture articles: first the polymers are derived from sustainable resources, and second, the articles can be disposed of easily by biodegradation. Biodegradation occurs under composting conditions. Degradation can also occur as a purely enzymatic process. Examples for enzyme systems for enzymatic degradation have been described, for instance, in J. Environm. Polym. Degrad. 3, (1995), 187-197 or in the German patent application DE 4415127 Al. The latter patent application refers to the disposal of laboratory items manufactured from biodegradable raw materials.
It is known that proteins bind to PHB. Its protein binding characteristics are described in Biochemica et Biophysica Acta, 1123 (1992) 33-40 and Eur. Polymer. J. 30 (1994) 1327-1333. However the affinity is not sufficient for analytical purposes. Surprisingly it was found that certain formulations (blends) of PHB and PLA showed considerably higher affinities than the original polymers to organic substances such as, for example, proteins, peptides, saccharides, and polynucleotides. The binding characteristics of these formulations are comparable to the affinities of the polymers currently used for manufacturing test system carriers, in particular of polystyrene. The polymer formulations invented are blends of PLA with 0-95% PHB, optionally combined with other substances such as plasticisers, dyes, nucleation agents, and/or other additives which are customary in polymer chemistry. The base polymer PLA can be bought from several producers, for example from Neste Oy, Espoo, Finland; Cargill, Minnetoka, Minn., USA; Shimazu, Tokyo, Japan; or Boehringer Ingelheim, Ingelheim, Germany. The base polymer PHB can be obtained commercially from Monsanto, Louvain-La-Neuve, Belgium, from Metabolix, Cambridge, Mass. USA, or from Biomer, Krailling, Germany. The PLA and PHB blends described therein can be obtained commercially from Biomer, Krailling, Germany. The formulations are composed primarily of biological raw materials and they are fully biodegradable under compost conditions. The inorganic components used in the formulations are biologically inert. Therefore no expensive and difficult waste collection and disposal system is required for the formulations described therein. The carriers produced can be disposed of close to the user's premises like other organic (food or feed) wastes, and can be composted together with the other organic wastes. Since they are produced essentially from biogenic resources, they do not upset the CO
2
balance of the atmosphere, even when burned.
Thus, the subject of this invention is a carrier system for use in immunological, enzymatic, chemical, and physical tests, such as for example, but not exclusively, micro well plates, test rods, test tubes, test spheres, or other media. As opposed to the carrier systems currently available, these are fully biologically degradable, i.e. compostable, are manufactured from renewable resources, and demonstrate increased affinities to organic substances such as proteins, peptides, saccharides, and polynucleodides. They compare well with polymer carriers used at present, in particular carriers made of polystyrene. Like other polymers, the formulations can be obtained as pellets, and, like other polymers, they can be processed using standard plastic processing techniques. For example the pellets can be molten in injection moulding machines, pressed into shape as molten mass, and once solidified, sold to analytical laboratories where they can be used for analysis in the same way as the present carrier systems. The advantage of this invention is that the materials are manufactured from renewable raw materials. A further advantage is that the carrier systems used can be disposed of, possibly after an autoclave sterilisation process, either in waste combustion plants without adding CO
2
to the atmosphere, or by a simple composting process at local sites, or by means of enzymatic degradation.
The preferred use of the described PHB and PLA blends is for carriers for analytical test systems, in particular enzymatic, chemical, physical, or immunological test systems (ELISA) in the form of, but not exclusively, micro well plates, test rods, test tubes, and test spheres. Users can expect cost savings as a result of such options as enxymatic degradation or biodegradation by using the PHB and PLA formulation
Hänggi Urs J.
Schecklies Elvira
Alexander Lyle A.
Hänggi Urs J.
Wenderoth , Lind & Ponack, L.L.P.
LandOfFree
Use of blends of water-resistant and biodegradable polymers... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of blends of water-resistant and biodegradable polymers..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of blends of water-resistant and biodegradable polymers... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2445961