Use of azetidinone compounds

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007100, C435S007210, C514S023000, C514S210020

Reexamination Certificate

active

06593078

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the use of azetidinone compounds that are inhibitors of cholesterol absorption as tools for discovering and characterizing proteins involved in trafficking or absorption of cholesterol and/or cholesteryl esters in biological systems. Further, these compounds can serve as tools for competitive binding assays to discover and characterize other chemical agents useful as cholesterol absorption inhibitors. New compounds of the present invention are highly efficacious inhibitors of cholesterol absorption.
BACKGROUND OF THE INVENTION
Atherosclerotic coronary heart disease (CHD) represents the major cause for death and cardiovascular morbidity in the western world. Risk factors for CHD include hypertension, diabetes mellitus, family history, male gender, cigarette smoke and serum cholesterol. A total cholesterol level in excess of 225 to 250 mg/dl is associated with significant elevation of risk of CHD.
Cholesteryl esters are a major component of atherosclerotic lesions and the major storage form of cholesterol in arterial wall cells. Formation of cholesteryl esters is also a key step in the intestinal absorption of dietary cholesterol. Thus, inhibition of cholesteryl ester formation and reduction of serum cholesterol is likely to inhibit the progression of atherosclerotic lesion formation, decrease the accumulation of cholesteryl esters in the arterial wall, and block the intestinal absorption of dietary cholesterol.
The regulation of whole-body cholesterol homeostasis in humans and animals involves the regulation of dietary cholesterol and modulation of cholesterol biosynthesis, bile acid biosynthesis and the catabolism of the cholesterol-containing plasma lipoproteins. The liver is the major organ responsible for cholesterol biosynthesis and catabolism and for this reason, it is a prime determinant of plasma cholesterol levels. The liver is the site of synthesis and secretion of very low density lipoproteins (VLDL) which are subsequently metabolized to low density lipoproteins (LDL) in the circulation. LDL are the predominant cholesterol-carrying lipoproteins in the plasma and an increase in their concentration is correlated with increased atherosclerosis.
When intestinal cholesterol absorption is reduced, by whatever means, less cholesterol is delivered to the liver. The consequence of this action is decreased hepatic lipoprotein production, and an increase in the hepatic clearance of plasma cholesterol, mostly as LDL. Thus, the net effect of inhibiting intestinal cholesterol absorption is a decrease in plasma cholesterol levels.
Certain azetidinone core structures have been reported to be useful in lowering cholesterol levels by decreasing intestinal cholesterol absorption. These related azetidinone cores and their synthesis are detailed in the following commonly assigned United States patents, the disclosures of which are incorporated, in their entirety, herein by reference: U.S. Pat. Nos. 5,688,787; 5,698,548; 5,624,920; 5,631,365; 5,633,246; 5,656,624; 5,744,467; and 5,767,115. The discovery of 2-azetidinones as potent and selective intestinal cholesterol absorption inhibitors has confirmed this mechanism as a key point of intervention for lowering cholesterol plasma levels and has validated the therapeutic value of such an approach.
The mechanism by which cholesterol moves from the lumen into the epithelial layer lining the small intestine is not well understood. Recent experimental evidence supports the notion of an active transport process mediated by a protein or proteins in the enteroacyte brush border membrane rather than a simple diffusion model. Kinetic analysis and sterol specificity of cholesterol uptake as well as the structure-activity relationship studies of the cholesterol absorption inhibitors are consistent with a specific protein receptor/transporter regulated event. Potential molecules for this process have been proposed in recent years. However, the specific biochemical pathway responsible for cholesterol absorption remains to be defined.
where R is fluorine, are potent inhibitors of cholesterol uptake in animal models and humans. The mechanism by which these compounds and related 2-azetidinones inhibit the uptake of cholesterol across the intestinal wall is not known. These compounds do not sequester bile acids or precipitate cholesterol. Nor do they potently inhibit HMG-CoA reductase, pancreatic lipase, or acyl-CoA cholesterol acyl transferase (ACAT). Understanding the mechanism by which these compounds inhibit cholesterol absorption will shed light on the biochemical pathways involved in the uptake of dietary and biliary cholesterol.
SUMMARY OF THE INVENTION
In one aspect, this invention provides a method for identifying a protein involved in cholesterol absorption in a biological system, the method comprising the steps of: (a) providing a cDNA expression library capable of expressing a protein involved in cholesterol absorption in a biological system, said cDNA expression library comprising a plurality of cells capable of expressing different cDNAs; (b) screening said expression library by incubating cells from said library with a fluorescent cholesterol absorption inhibitor; (c) after step (b), identifying the cell or cells in said library that display the greatest amount of fluorescence; and (d) identifying the protein associated with the cDNA expressed by said cell or cells displaying the greatest amount of fluorescence.
In another aspect, this invention provides a method for assaying inhibitory agents for activity against cholesterol absorption, the method comprising the steps of: providing a cell capable of binding a fluorescent cholesterol absorption inhibitor; contacting said cell with a candidate inhibitory agent in the presence of said fluorescent cholesterol absorption inhibitor; and measuring the inhibition of the fluorescence of said cell.
In still another aspect, this invention provides a method for identifying inhibitory agents which inhibit the absorption of cholesterol into a cell membrane, said method comprising the steps of: (a) combining a fluorescent cholesterol absorption inhibitor, said cell membrane and a candidate inhibitory agent, under conditions wherein, but for the presence of said inhibitory agent, said fluorescent cholesterol absorption inhibitor is bound to the membrane; and (b) detecting the relative presence or absence of fluorescent cholesterol absorption inhibitor absorption bound to the membrane, wherein a relative absence of fluorescent cholesterol absorption inhibitor absorption indicates that said candidate inhibitory agent is an inhibitory agent which inhibits cholesterol absorption into the membrane.
In another aspect, this invention provides a method for identifying inhibitory agents which inhibit the absorption of cholesterol, said method comprising the steps of: (a) combining a labeled cholesterol absorption inhibitor, a cell expressing the scavenger receptor type B, class I (SR-BI) and a candidate inhibitory agent, under conditions wherein, but for the presence of said inhibitory agent, said labeled cholesterol absorption inhibitor binds to SR-BI; and (b) detecting the relative presence or absence of labeled cholesterol absorption inhibitor absorption bound to SR-BI, wherein a relative absence of labeled cholesterol absorption inhibitor absorption indicates that said candidate inhibitory agent is an inhibitory agent which inhibits SR-BI-mediated cellular cholesterol absorption.
In further aspects, this invention provides proteins and new inhibitory agents identified by the above methods. This invention also provides novel fluorescent cholesterol absorption inhibitors of formulas I and II:
wherein R comprises a fluorescent moiety.
DETAILED DESCRIPTION OF THE INVENTION
A. Novel Fluorescent Cholesterol Absorption Inhibitors
Novel fluorescent cholesterol absorption inhibitors of this invention include compounds of formulas I and II:
wherein R comprises a fluorescent moiety. In preferred embodiments, R is a fluorescent moiety linked by an alkynyl-containin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of azetidinone compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of azetidinone compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of azetidinone compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100881

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.