Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2002-02-19
2003-06-10
Weddington, Kevin E. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
Reexamination Certificate
active
06576652
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the use of an angiotensin II receptor antagonist, such as substituted imidazole compounds, for the treatment of Post-transplant hypertension. The invention also relates to use of an angiotensin II receptor antagonist, such as substituted imidazole compounds, for the preparation of drugs to increase the survival rate of transplant patients, including renal transplant patients. The invention also relates to a method of using an angiotensin II receptor antagonist, such as substituted for increasing the survival rate of transplant patients, including renal transplant patients.
Substituted imidazoles of formula I are known to inhibit the action of the octapeptide hormone angiotensin II (AII) and are useful therefore in alleviating angiotensin induced hypertension. The enzyme renin acts on a blood plasma &agr;2-globulin, angiotensinogen, to produce angiotensin I, which is then converted by angiotensin converting-enzyme to AII. The latter substance is a powerful vasopressor agent which has been implicated as a causitive agent, for producing high blood pressure in various mammalian species, such as the rat, dog, and man. The compounds disclosed in this application inhibit the action of AII at its receptors on target cells and thus prevent the increase in blood pressure produced by this hormone-receptor interaction. The present application discloses a method for the improvement of insulin sensitivity by administering an angiotensin II receptor antagonist, such as a substituted imidazole of formula I, to a species of mammal with hypertension due to angiotensin II. Administration of an angiotensin II receptor antagonist, such as a substituted imidazole of formula I, with a diuretic, such as furosemide or hydrochlorothiazide; either as a stepwise combined therapy (diuretic first) or as a physical mixture, enhances the antihypertensive effect of the compound, while also improving the insulin sensitivity of the patient.
K. Matsumura, et al., in U.S. Pat. No. 4,207,324 issued Jun. 10, 1980, discloses 1,2-disubstituted-4-haloimidazole-5-acetic acid derivatives of the formula:
wherein R1 is hydrogen, nitro or amino; R2 is phenyl, furyl or thienyl optionally substituted by halogen, lower alkyl, lower alkoxy or di-lower alkylamino; R3 is hydrogen or lower alkyl and X is halogen; and their physiologically acceptable salts. These compounds have diuretic and hypotensive actions.
Furukawa, et al., in U.S. Pat. No. 4,355,040 issued Oct. 19, 1982, discloses hypotensive imidazole-5-acetic acid derivatives having the formula:
wherein R1 is lower alkyl, cycloalkyl, or phenyl optionally substituted; X1, X2, and X3 are each hydrogen, halogen, nitro, amino, lower alkyl, lower alkoxy, benzyloxy, or hydroxy, Y is halogen and R2 is hydrogen or lower alkyl; and salts thereof.
Furukawa, et al., in U.S. Pat. No. 4,340,598, issued Jul. 20, 1982, discloses hypotensive imidazole derivatives of the formula:
wherein R1 is lower alkyl or, phenyl C1-2 alkyl optionally substituted with halogen or nitro; R2 is lower alkyl, cycloalkyl or phenyl optionally substituted; one of R3 and R4 is —(CH2)nCOR5 where R5 is amino, lower
alkoxyl or hydroxyl and n is 0, 1, 2 and the other of R3 and R4 is hydrogen or halogen; provided that RI is lower alkyl or phenethyl when R3 is hydrogen, n=1 and R5 is lower alkoxyl or hydroxyl; and salts thereof.
Furukawa, et al., in EP 103,647 discloses 4-chloro-2-phenylimidazole-5-acetic acid derivatives useful for treating edema and hypertension of the formula:
where R represents lower alkyl and salts thereof.
The metabolism and disposition of hypotensive agent 4-chloro-1-(4-methoxy-3-methylbenzyl)-2-phenyl-imidazole-5-acetic acid is disclosed by H. Torfii in Takeda Kenkyushoho, 41, No 3/4,180-191 (1982).
Frazee, et al., in EP 125,033-A discloses 1-phenyl(alkyl)-2-(alkyl)-thioimidazole derivatives which are inhibitors of dopamine-&bgr;-hydroxylase and are useful as antihypertensives, diuretics and cardiotonics.
Published European Patent Application EP 146,228-A filed Oct. 16, 1984, by S. S. L. Parhi discloses a process for the preparation of 1-substituted-5-hydroxymethyl-2-mercaptoimidazoles.
A number of references disclose 1-benzyl-imidazoles such as U.S. Pat. No. 4,448,781 to Cross and Dickinson (issued May 15, 1984); U.S. Pat. No. 4,226,878 to Ilzuka, et al. (issued Oct. 7, 1980); U.S. Pat. No. 3,772,315 to Regel, et al. (issued Nov. 13, 1973); U.S. Pat. No. 4,379,927 to Vorbruggen, et al. (issued Apr. 12, 1983); amongst others.
Pals, et al., Circulation Research 29,673 (1971) describe the introduction of a sarcosine residue in position 1 and alanine in position 8 of the endogenous vasoconstrictor hormone All to yield an (octa)peptide that blocks the effects of All on the blood pressure of pithed rats. This analog, [Sar1, Ala8] All, initially called “P-113” and subsequently “Saralasin,” was found to be one of the most potent competitive antagonists of the actions of All, although, like most of the so-called peptide-AII-antagonists, it also possesses agonistic actions of its own. Saralasin has been demonstrated to lower arterial pressure in mammals and man when the (elevated) pressure is dependent on circulating All (Pals et al., Circulation Research 29,673 (1971); Streeten and Anderson, Handbook of Hypertension, Vol. 5, Clinical Pharmacology of Antihypertensive Drugs, A. E. Doyle (Editor), Elsevier Science Publishers B. V., p. 246 (1984). However, due to its agonistic character, Saralasin generally elicits, pressor effects when the pressure is not sustained by AII. Being a peptide, the pharmacological effects of saralasin are relatively short-lasting and are only manifest after parenteral administration, oral doses being ineffective. Although the therapeutic uses of peptide AII-blockers like saralasin, are severely limited due to their oral ineffectiveness and short duration of action, their major utility is as a pharmaceutical standard.
Currently there are several A II antagonists in development. Among these development candidates, is Losartan which is disclosed in a U.S. Pat. No. 5,138,069 issued to DuPont on Aug. 11, 1992. Losartan has been demonstrated to be an orally active A II antagonist, selective for the-AT1 receptor subtype.
Some known non-peptide antihypertensive agents act by inhibiting an enzyme, called angiotensin converting enzyme (ACE), which is responsible for conversion of angiotensin I to AIL Such agents are thus referred to as ACE inhibitors, or converting enzyme inhibitors (CEI's). Captopril and enalapril are commercially available CEI's.
Based on experimental and clinical evidence, about 40% of hypertensive patients are non-responsive to treatment with CEI's. But when a diuretic such as furosemide or hydrochlorothiazide is given together with a CEI, the blood pressure of the majority of hypertensive patients is effectively normalized Diuretic treatment converts the non-renin dependent state in regulating blood pressure to a renin-dependent state. Although the imidazoles of this invention act by a different mechanism, i.e., by blocking the All receptor rather than by inhibiting the angiotensin converting enzyme, both mechanisms involve interference with the renin-angiotensin cascade. A combination of the CEI enalapril mialeate and the diruetic hydrochlorothiazide is commercially available under the trademark Vaseretic® from Merck & Co. Publications which relate to the use of diuretics with CEI's to treat hypertension, in either a diuretic-first, stepwise approach or in physical combination, include Keeton, T. K. and Campbell, W. B., Pharmacol. Rev., 31:81 (1981) and Weinberger, M. H., Medical Clinics N. America, 71:979 (1987). Diuretics have also been administered in combination with saralasin to enhance the antihypertensive effect.
Non-steroidal anti-inflammatory drugs (NSAID's) have been reported to induce renal failure in patients with renal under perfusion and high plasma level of All. (Dunn, M. J., Hospital Practice, 19-99, 1984). Administration of an AII blocking compound of
Browdy & Neimark PLLC
Merck Sharp & Dohme (Italia) S.p.A.
Weddington Kevin E.
LandOfFree
Use of an angiotensin II receptor antagonist for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of an angiotensin II receptor antagonist for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of an angiotensin II receptor antagonist for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3134158