Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Animal or plant cell
Reexamination Certificate
2006-04-25
2006-04-25
Lankford, Jr., Leon B. (Department: 1651)
Drug, bio-affecting and body treating compositions
Whole live micro-organism, cell, or virus containing
Animal or plant cell
C424S093400, C435S325000, C435S366000, C435S377000, C435S395000, C435S455000
Reexamination Certificate
active
07033587
ABSTRACT:
Methods and compositions for directing adipose-derived stromal cells cultivated in vitro to differentiate into cells of the chondrocyte lineage are disclosed. The invention further provides a variety of chondroinductive agents which can be used singly or in combination with other nutrient components to induce chondrogenesis in adipose-derived stromal cells either in cultivating monolayers or in a biocompatible lattice or matrix in a three-dimensional configuration. Use of the differentiated chondrocytes for the therapeutic treatment of a number of human conditions and diseases including repair of cartilage in vivo is disclosed.
REFERENCES:
patent: 4362567 (1982-12-01), Schwarz et al.
patent: 4377572 (1983-03-01), Schwarz et al.
patent: 5160490 (1992-11-01), Naughton et al.
patent: 5197973 (1993-03-01), Pang et al.
patent: 5486359 (1996-01-01), Caplan et al.
patent: 5723331 (1998-03-01), Tubo et al.
patent: 5786207 (1998-07-01), Katz et al.
patent: 5863531 (1999-01-01), Naughton et al.
patent: 5902741 (1999-05-01), Purchio et al.
patent: 5908784 (1999-06-01), Johnstone et al.
patent: 6153432 (2000-11-01), Halvorsen et al.
patent: 6194203 (2001-02-01), Blum et al.
patent: 6200606 (2001-03-01), Peterson et al.
patent: 2 448 900 (1980-09-01), None
patent: 2 448 901 (1980-09-01), None
patent: WO 95/33821 (1995-12-01), None
patent: WO 99/28444 (1999-06-01), None
patent: WO 00/53795 (2000-09-01), None
U.S. Appl. No. 60/123,711, filed Mar. 10, 1999, Peterson et al.
U.S. Appl. No. 60/162,462, filed Oct. 29, 1999, Peterson et al.
Ashton et al., “Formation of Bone and Cartilage by Marrow Stromal Cells in Diffusion Chambers in Vivo,” Clin. Orthop. Rel. Res., (1980), vol. 151, pp. 294-307.
Ballock & Reddi, “Thyroxine is the Serum Factor That Regulates Morphogenesis of Columar Cartilage from Isolated Chondrocytes in Chemically Defined Medium,” J. Cell Biol., (1994), vol. 126:5, pp. 1311-1318.
Benya, P., et al., Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels, Cell, 30 (1982), 215-224.
Bonadio et al., “Localized, Direct Plasmid Gene Delivery in Vivo: Prolonged Therapy Results In Reproducible Tissue Regeneration,” Nat. Med., (1999), vol. 5, pp. 753-759.
Bruder et al., “Osteochondral Differentiation and the Emergence of State-Specific Osteogenic Cell-Surface Molecules by Bone Marrow Cells in Diffusion Chambers,” Bone Mineral, (1990), vol. 11, pp. 141-151.
Burris et al., “A Novel Method for Analysis of Nuclear Receptor Function at Natural Promoters: Peroxisome Proliferator-Activated Receptor y Agonist Actions on a P2 Gene Expression Detected Using Branched DNA Messenger RNA Quantitation,” Molecular Endocrinology, (1999), 13, 3, 410.
Byk T. et al., “Lipofectamine and Related Cationic Lipids Strongly Improve Adenoviral Infection Efficiency of Primitive Human Hematopoietic Cells,” Human Gene Therapy, (1998), vol. 9, pp. 2493-2502.
Chu CR et al., “Articular Cartilage Repair Using Allogeneic Perichondrocyteseeded Biodegradable Porous Polyactic Acid (PLA): A Tissue-Engineering Study,” J. Biomed. Mater. Res., (1995), vol. 29, pp. 1147-1154.
Dennis et al., “Osteogenesis in Marrow Derived Mesenchymal Cell Porous Ceramic Composites Transplanted Subcutaneously: Effect of Fibronectin and Laminin on Cell Retention and Rate of Osteogenic Expression,” Cell Transpl. (1991), vol. 1, pp. 23-32.
Dorheim et al., “Osteoblastic Gene Expression During Adipogenesis in Hematopoietic Supporting Murine Bone Marrow Stromal Cells,” J. Cell Physiol., (1993), vol. 154, pp. 317-328.
Elmer et al., “Immunohistochemical Localization of Cyclic AMP During Normal and Abnormal Chick and Mouse Limb Development,” Teratology, (1981), vol. 24, pp. 215-223.
Gimble, Jeffrey Martin, “The Function of Adipocytes in the Bone Marrow Stroma,” The New Biologist, (1990), 2, 4, 304.
Gimble et al., “Adipogenesis in a Myeloid Supporting Bone Marrow Stromal Cell Line,” J. Cell Biochem., (1992), vol. 50, pp. 73-82.
Gimble et al., “The Function of Adipocytes in the Bone Marrow Stroma: An Update,” Bone, (Nov. 1996), vol. 19:5, pp. 421-428.
Gimble et al., “Nuclear Hormone Receptors and Adipogenesis,” Critical Reviews in Eukaryotic Gene Expression, (1998), 8(2), 141.
Gimble et al., “Adipocyte Biology of the Bone,” Adipocyte Biology and Hormone Signaling, IOS Press, The Netherlands, (2000), 231.
Goshima et al., “The Origin of Bone Formed in Composite Grafts of Porous Calcium Phosphate Ceramic Loaded with Marrow Cells,” Clin. Orthop. Rel. Res., (1991), vol. 269, pp. 274-283.
Gronthos et al., “Surface Protein Characterization of Human Adipose Tissue-Derived Stromal Cells,” Journal of Cellular Physiology, (2001), 9999,1.
Hauschka, S. D., “Clonal Analysis of Vertebrate Myogenesis III. Developmental Changes in the Muscle-Colony-Forming Cells of the Human Fetal Limb,” Development Biology, (1974), vol. 37, pp. 345-368.
Hendrickson DA et al., “Chondrocyte-Fibrin Matrix Transplants for Resurfacing Extensive Articular Cartilage Defects,” Orthop. Res., (1994), vol. 12, pp. 485-497.
Ichinose et al., “Structure of Transglutaminases,” J. Biol. Chem., (1990), vol. 265:3, pp. 13411-13414.
Kato et al., “Terminal Differentiation and Calcification in Rabbit Chondrocyte Cultures Grown in Centrifuge Tubes: Regulation by Transforming Growth Factor β and Serum Factors,” PNAS, (1988), vol. 85, pp. 9552-9556.
Mackay et al., (1998), Tissue Engineering 4:415-428.
Mayne et al., “Changes in Type of Collagen Synthesized as Clones of Chick Chondrocytes Grown and Eventually Lose Division Capacity,” PNAS, (1976), vol., 73:5, pp. 1674-1678.
Mayne et al., “Changes in the Synthesis of Minor Cartilage Collagens after Growth of Chick Chonrocytes in 5-Bromo-2′-Deoxyuridine or to Senscence,” Exp. Cell. Res., (1984), vol. 151:1, pp. 171-182.
Mizudo, M.D., Hiroshi, “The Myogenic Potential of Human Processed Lipoaspirates—Part I: Morphological, Immunohistochemical Analysis and Gene Expression,” J. Jpn. P.R.S., (2001), 21 427.
Mizuno et al., “Myogenic Differentiation by Human Processed Lipoaspirate Cells,” Plastic and Reconstructive Surgery, (2002), 109, 1, 199.
Nakahara et al., “In Vitro Differentiation of Bone and Hypertrophic Cartilage from Periosteal-Derived Cells,” Exp. Cell Res., (1981), vol. 195, pp. 492-503.
Oegama et al., “Characterization of a Hyaluronic Acid-Dermatan Sulfate Proteoglycan Complex from Dedifferentiated Human Chondrocyte Cultures,” J. Biol. Chem., (1981) vol. 256:2, pp. 1015-1022.
Okayama et al., “Differences Among Sulfated Proteoglycans Synthesized in Nonchondrogenic Cells, Presumptive Chondroblasts, and Chondroblasts,” PNAS, (1976), vol. 73:9, pp. 3224-3228.
Pacifici et al., “Transformation of Chondroblasts by Rous Sarcoma Virus and Synthesis of the Sulfated Proteoglycan Matrix,” Cell, (1977), vol. 4, pp. 891-899.
Pacifici et al., “12-OTetradecanoylphorbol-13-acetate-induced Changes in Sulfated Proteoglycan Synthesis in Cultured Chondroblasts,” Cancer Res., (1980), vol. 40:7, pp. 2461-2464.
Pacifici et al., “Changes in the Sulfated Proteoglycans Synthesized by “Aging” Chondrocytes,” J. Biol. Chem., (1981), vol. 256:2, pp. 1029-1037.
Perka C. et al., “Matrix-Mixed Culture: New Methodology for Chondrocyte Culture and Preparation of Cartilage Transplants,” J. Biomed. Mater. Res., (2000), vol. 49, pp. 305-311.
Phinney et al., “Plastic Adherent Stromal Cells from the Bone Marrow of Commonly Used Strains of Inbred Mice: Variation in Yield, Growth, and Differentiation,” J. Cell Biochem., (1999), vol. 72:4, pp. 570-585.
Remy-Martin et al., “Vascular Smooth Muscle Differentiation of Murine Stroma: A Sequential Model,”
Gimble Jeffrey Martin
Halvorsen Yuan-Di C.
Wilkison William O.
Artecel Sciences, Inc.
Drinker Biddle & Reath LLP
Lankford , Jr. Leon B.
LandOfFree
Use of adipose tissue-derived stromal cells for chondrocyte... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of adipose tissue-derived stromal cells for chondrocyte..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of adipose tissue-derived stromal cells for chondrocyte... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3552523