Use of a DNA sequence coding for a protein capable of...

Chemistry: molecular biology and microbiology – Treatment of micro-organisms or enzymes with electrical or... – Modification of viruses

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C800S278000, C800S279000, C536S023200, C536S023600

Reexamination Certificate

active

06187571

ABSTRACT:

The invention relates to a novel use of a DNA sequence coding for a protein capable of degrading oxalic acid for selecting plant cells, in particular plant cells which have integrated a gene of interest, and a novel process for selecting, on oxalic acid, cells, calluses or transformed plants.
Since the arrival of the first transgenic plants in 1983, the number of these has enjoyed an accelerated growth. The transformation vectors which have been developed in this period and which are always used, such as, for example, the vector pBIN19 (M. Bevan, 1984, Nucl. Ac. Res., 12, 8711-8721) produce a resistance gene to an antibiotic, kanamycin, as selection gene of transformed plant cells. The use of this mode of selection, generally easy to carry out, cheap and applicable to numerous plant species, has become very widespread in research laboratories.
Since the first field trials, thus out of confinement, of transgenic plants took place in 1986, the use of a resistance gene to an antibiotic as selection gene has been the subject of numerous reviews (cf. particularly F. Casse-Delbart and M. Tepfer, 1990, Biofutur, June, 56-59 as well as J. Bryant and S. Leather, 1992, Tibtech, 10, 274-275). The risk of transmission of the resistance gene of the transgenic plant to a soil bacterium and, subsequently, to a bacteria which is potentially pathogenic for man, although a priori being very slight and still never demonstrated, is not to be neglected (J. A. Heinemann, 1991, TIG, 7, 181-185).
Numerous substitutes for the resistance gene to kanamycin have been proposed (M. Ratner, 1989, Bio-Technology, 7, 337-341) but the majority produce either resistance to another antibiotic (such as, for example, gentamicin, streptomycin, methotrexate or hygromycin), or resistance to a herbicide (such as, for example, bromoxynil or phosphoinothrycin), which raises similar objections. Another approach proposed has been the elimination, after use, of the resistance gene due to a system of homologous recombination (E. C. Dale and D. W. Ow, 1991, Proc. Natl. Acad. Sci. U.S.A., 88, 10558-10562). This system, called the cre/lox system, presents, however, the disadvantage of requiring a subsequent transformation of the transgenic plants to introduce into them the cre gene responsible for the recombination, followed by a self-fertilization of the plants in order to be able to segregate in the descendents this cre gene from the gene of interest. It is thus not simple to use. In addition, this system leaves in the transgenic plants a copy of the lox sequences, which do not have any agronomic interest.


REFERENCES:
Lewin. When does homology mean something else? Science. vol. 237, p. 1570, 1987.
Dumas et al. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol. 107:1091-1096, 1995.
Zhang et al. Germin-like oxalate oxidase, a H202-producing enzyme, accumulates in barley attacked by the powdery mildew funguss. Plant Journal 8:139-145, 1995.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of a DNA sequence coding for a protein capable of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of a DNA sequence coding for a protein capable of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of a DNA sequence coding for a protein capable of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.