Use of a catalyst system comprising nickel, palladium, or...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C548S110000

Reexamination Certificate

active

06403801

ABSTRACT:

TECHNICAL FIELD
This invention relates to Suzuki coupling reactions, which can be used for chemical synthesis in the polymer and the fine chemical industry.
BACKGROUND
The palladium catalyzed Suzuki cross-coupling reaction of aryl bromides, aryl iodides, and aryl pseudohalides (e.g., triflates) is a general method employed for the formation of C—C bonds. Prior art methods generally cannot employ aryl chlorides as feedstock for these chemical transformations, and require the use of more expensive aryl bromides and aryl iodides. The use of aryl chlorides as chemical feedstock in coupling chemistry has proven difficult but would economically benefit a number of industrial processes. The few prior art methods that can employ aryl chlorides use expensive, air-sensitive phosphine ligands. See in this connection Old et al.,
J. Am. Chem. Soc
., 1998, 120, 9722-9723, and Littke and Fu,
Angew. Chem. Int. Ed. Engl
., 1998, 37, 3387-3388, which describe phosphine-modified, palladium-mediated Suzuki coupling reactions which employ aryl chlorides as substrates. The use of a bulky phosphine (e.g., tri(tert-butyl)phosphine) or phosphine-containing moiety (e.g., di(cyclohexyl)phosphino) in ancillary ligation was shown to be fundamental in triggering the observed catalytic behavior. In addition, these phosphine ligands are often difficult to remove from the process product.
Nucleophilic N-heterocyclic carbenes, the imidazoline-2-ylidenes (sometimes commonly called imidazol-2-ylidenes) or so-called “phosphine mimics”, have attracted considerable attention as possible alternatives for the widely used phosphine ligands in homogeneous catalysis. A primary advantage of these ligands is that an excess of the ligand is not required. It appears that these ligands do not dissociate from the metal center, thus preventing aggregation of the catalyst to yield the bulk metal.
In fact, Herrmann et al., in
J. Organometallic Chem
., 1998, 557, 93-96, have reported Suzuki coupling activity using carbene ancillary ligands with aryl bromides and an activated aryl chloride as substrates. While these carbene ligands are thermally stable, the reported reaction times were long, and the yield from the aryl chloride was relatively low.
THE INVENTION
This invention provides a process for conducting Suzuki coupling reactions. The catalyst system used in the present invention exhibits the fastest reaction rate for Suzuki coupling observed to date, 3 times faster than the best reported rate for a phosphine-based catalyst system. The catalyst system of the present invention permits the use of aryl chlorides as substrates in Suzuki coupling reactions while eliminating the need for phosphine ligands. Furthermore, both electron-donating and electron-withdrawing substituents on the aryl halide or pseudohalide, the arylboronic acid, or both, in the Suzuki coupling reaction are well tolerated by the catalyst system of the present invention, and provide the corresponding Suzuki coupling products in excellent yields.
An embodiment of this invention provides a process which comprises mixing, in a liquid medium, i) at least one strong base; ii) at least one aryl halide or aryl pseudohalide in which all substituents are other than boronic acid groups, wherein the aryl halide has, directly bonded to the aromatic ring(s), at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom, and an iodine atom; iii) at least one arylboronic acid in which all substituents are other than chlorine atoms, bromine atoms, iodine atoms, or pseudohalide groups; iv) at least one metal compound comprising at least one metal atom selected from nickel, palladium, and platinum, wherein the formal oxidation state of the metal is zero or two; and v) at least one N-heterocyclic carbene. The N-heterocyclic carbene is selected from the group consisting of an imidazoline-2-ylidene wherein the 1 and 3 positions are each, independently, substituted by a secondary or tertiary group which has at least three atoms, or a protonated salt thereof; an imidazolidine-2-ylidene wherein the 1 and 3 positions are each, independently, substituted by a secondary or tertiary group which has at least three atoms, or a protonated salt thereof; a bis(imidazoline-2-ylidene) wherein a bridging moiety is bound to one nitrogen atom of each ring, and wherein the remaining two nitrogen atoms are each, independently, substituted by a secondary or tertiary group which has at least three atoms, or a protonated salt thereof; a bis(imidazolidine-2-ylidene) wherein a bridging moiety is bound to one nitrogen atom of each ring, and wherein the remaining two nitrogen atoms are each, independently, substituted by a secondary or tertiary group which has at least three atoms, or a protonated salt thereof; and mixtures of two or more of the foregoing.
Further embodiments and features of this invention will be apparent from the ensuing description and appended claims.
The liquid medium for the processes of this invention can include any of a wide range of solvents, and mixtures of solvents are also usable. The exclusion of water is not necessary, but is preferred. Types of solvents that can be used include hydrocarbons, ethers, amides, ketones, and alcohols. Polar solvents are preferred; ethers are a more preferred Solvent type. Ethers that may be used include, for example, diethyl ether, di-n-propyl ether, diisopropyl ether, tert-butyl ethyl ether, diheptyl ether, 1,3-dioxolane, 1,4-dioxane, tetrahydrofuran, methyltetrahydrofuran, glyme (the dimethyl ether of ethylene glycol), diglyme (the dimethyl ether of diethylene glycol), and the like. Cyclic ethers and polyethers are preferred; a highly preferred ether is 1,4-dioxane.
A large variety of strong bases are suitable -for use in the processes of this invention. Generally, these are inorganic bases. Alkali metal salts are a preferred group of inorganic bases. Examples of suitable alkali metal salts include, but are not limited to, sodium acetate, sodium bicarbonate, sodium tert-butoxide, sodium oxide, sodium tetrafluoroborate, potassium acetate, potassium carbonate, potassium tert-butoxide, potassium nitrite, potassium phosphate, potassium sulfite, potassium hexafluorophosphate, cesium acetate, cesium bicarbonate, cesium carbonate, cesium fluoride, cesium nitrate, and cesium sulfate. Alkali metal salts of carboxylic acid anions (e.g., acetate, trifluoroacetate, citrate, formate, oxalate, propionate, tartrate, etc.) are also suitable for use as the inorganic base in this invention. More preferred are salts of potassium and cesium; most preferred are cesium salts. The most highly preferred inorganic base is cesium carbonate. Choice(s) of inorganic base will vary with the particular system of aryl halide or pseudohalide and arylboronic acid involved. Amine bases are generally not preferred because, to date, they appear to poison the catalyst system of the invention.
Directly bonded to the aromatic ring(s) of the aryl halide or pseudohalide (i.e., aryl halide or aryl pseudohalide) is at least one halogen atom selected from a chlorine atom, a bromine atom, and an iodine atom, or at least one pseudohalide group. The term “pseudohalide group” includes such groups as p-toluenesulfonate(tosylate), and trifluoromethanesulfonate(triflate). The aryl halide or pseudohalide can have two or more such halogen atoms with an atomic number greater than nine and/or pseudohalide groups, including combinations of halogen atoms and pseudohalide groups. However, when two or more such groups are present, the halogen atoms with an atomic number greater than nine and/or pseudohalide groups should all be different from each other. For example, when two such substituents are present, they may be a chlorine atom and a bromine atom, or an iodine atom and a tosylate group, or etc. It is preferred that there is only one chlorine atom, bromine atom, iodine atom, or pseudohalide group directly bound to the aryl ring of the aryl halide or pseudohalide. Aryl chlorides are more preferred as the aryl halide reactants. To prevent self-reaction, it is pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of a catalyst system comprising nickel, palladium, or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of a catalyst system comprising nickel, palladium, or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of a catalyst system comprising nickel, palladium, or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2906336

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.