Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Patent
1993-08-09
1996-07-02
Goldberg, Jerome D.
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
A61K 31505
Patent
active
055322468
DESCRIPTION:
BRIEF SUMMARY
This application is a 371 of PCT/CA92/00001 filed Jan. 3, 1992.
The present invention relates to the use of nucleoside analogues in the treatment of viral infections. More specifically it is concerned with the use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis, in particular hepatitis B.
Hepatitis B is a viral disease transmitted orally or parenterally by contaminated material such as blood and blood products, contaminated needles, sexually and vertically from infected or carrier mothers to their off-spring. In those areas of the world where the disease is common vertical transmission at an early age results in a high proportion of infected individuals becoming chronic carriers of hepatitis B. There are an estimated 280,000,000 carriers of hepatitis B worldwide. At the present time there are no effective chemotherapeutic agents for the treatment of hepatitis B infections.
A number of nucleoside derivatives have been described as having activity against the hepatitis B virus.
EPA 0206497 describes a number of 2',3'-dideoxy purine and pyrimidine nucleosides with antiviral activity including activity against the hepatitis B virus.
EPA 0302760 describes the use of 2',3'-dideoxy purine nucleosides for the treatment of hepatitis B infections.
WO90/14079 describes the treatment of hepatitis B by administration of 2',3'-dideoxycytidine.
WO90/14091 describes the treatment of hepatitis B by administration of 2',3'-dideoxyguanosine, 2',3'-dideoxy adenosine or 2',3'-dideoxyinosine.
European patent application publication number 0 382 526 describes a series of 1,3-oxathiolane nucleoside analogues having antiviral activity, in particular activity against HIV, the causative agent of AIDS.
PCT patent application publication number WO91/17159 describes the compound (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolanes-yl)-(1H)-pyrimidin-2- one (also known as 3TC) and its use in the treatment of HIV infections. 3TC is the (-)-enantiomer of one of the compounds (BCH-189) described in EPA 0382526. We have now found that BCH-189 and its individual enantiomers, including 3TC, are active both in vitro and in vivo against the hepatitis B virus.
The invention accordingly provides, in a first aspect, a method for the treatment of an animal, including man, infected with or susceptible to infection with the hepatitis B virus comprising the administration of an effective amount of a compound of formula (I) ##STR2## or a pharmaceutically acceptable derivative thereof.
In a further or alternative aspect there is provided a compound of formula (I) as defined hereinabove or a pharmaceutically acceptable derivative thereof for use in the manufacture of a medicament for the treatment of hepatitis B.
As will be appreciated by those skilled in the art references herein to treatment extend to prophylaxis as well as to the treatment of established infections or symptoms.
As will be appreciated by those skilled in the art the compound of formula (I) is a cis compound and contains two chiral centres (shown in formula (I) by *). Thus the compound exists as two enantiomers, compounds of formulae (Ia) and (Ib) respectively. ##STR3##
The compound of formula (I) is preferably in the form of a racemic mixture or its (-)-enantiomer but a mixture of compounds of formulae (Ia) and (Ib) in any ratio may be employed in the invention.
The compound of formula (I) has the chemical name cis-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. It is also known as BCH-189. The (-)-enantiomer has the chemical name (-)-cis-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-o ne and has the absolute stereochemistry of the compound of formula (Ib) which has the name (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2- one. It is also known as 3TC.
Preferably when the (-)-enantiomer is employed it will be substantially free of the corresponding (+)-enantiomer, that is to say no more than about 5% w/w of the (+)-enantiomer, preferably no more than about 2%, in particular less than about 1% w/w w
REFERENCES:
patent: 5039667 (1991-08-01), Tyrell et al.
patent: 5047407 (1991-09-01), Belleau et al.
Beach et al., "Synthesis of Enantiomerically Pure (2'R,5'S)-(-)-1-[2-(Hydroxymethyl) oxathiolan-5-yl]cytosine as a Potent Antiviral Agent Against Hepatitis B Virus (HBV) And Human Immunodeficiency Virus (HIV)," 57 J. Org. Chem., pp. 2217-2219 (1992).
Belleau et al., "Design And Activity Of A Novel Class Of Nucleoside Analogs Effective Against HIV-1," Fifth International Conference On AIDS, Montreal, Canada, Abstract T.C.O.1 (1989).
Carlisle et al., "Cellular Pharmacology Of The Anti-HIV Agent BCH-189 (2'-Deoxy-3'-Thiacytidine) In Human Peripheral Blood Mononuclear Cells (PBMC)", American Association For Cancer Research Proceedings, 31 Abstract 2435 (1990).
Chang et al., "Deoxycytidine Deaminase-resistant Stereoisomer Is the Active Form of (.+-.)-2',-3'-Diedeoxy-3'-thiacytidine in the Inhibition of the Hepatitis B Virus Replication," 267 J. Biol. Chem., pp. 3938-3942 (1992).
Coates et al., "The Separated Enantiomers of 2'-Deoxy-3'-Thiacytidine (BCH 189) Both Inhibit Human Immunodeficiency Virus Replication in Vitro," 36 Antimicrobial Agents & Chemotherapy, No. 1, pp. 202-205 (1992).
Doong et al., "Inhibition of the Replication of Hepatitis B Virus In-Vitro By 2'3' Dideoxy-3'-thiacytidine and Related Analogues," Thirty-first Annual Interscience Conference of Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 29 Sep.-2 Oct. 1991, Program Abstract 31(0) 181 (1991).
Doong et al., "Inhibition of the Replication of Hepatitis B Virus in vitro by 2',3'-dideoxy-3'-thiacytidine and related analogues," 88 Proc. Natl. Acad. Sci., USA, pp. 8495-8499; 88 Physiology/Pharmacology 8495-8499 (1991).
Greenberg et al., "Metabolism, Toxicity, and Anti-HIV Activity of 2'-Deoxy-3'-Thia-Cytidine (BCH-189) in T and B Cell Lines," 616 Annals of the New York Academy Of Sciences 517-518 (1990).
Kassianides et al. Abstract: "Effects of 2',3'-dideoxycytidine on Duck Hepatitis B Virus," 94 Gastroenterology No. 5, A552 (1988).
Kassianides et al., "Inhibition of Duck Hepatitis B Virus Replication by 2',3'-Dideoxycytidine," 97 Gastroenterology, No. 5, 1275-1280 (1989).
Lee et al., "In Vitro and In Vivo Comparisons of the Abilities of Purine and Pyrimidine 2',3'-Dideoxynucleosides To Inhibit Duck Hepadnavirus," 33 Antimicrobial Agents and Chemotherapy, No. 3, 336-39 (1989).
Soudeyns et al., "Anti-Human Immunodeficiency Virus Type 1 Activity and In Vitro Toxicity of 2'-Deoxy-3'-Thiacytidine (BCH-189), a Novel Heterocyclic Nucleoside Analog," 35 Antimicrobial Agents and Chemotherapy, No. 7, pp. 1386-1390 (1991).
Suzuki et al., "Inhibition of Hepatitis B Virus Replication By Purine 2',3'-Dideoxynucleosides," 156 Biochemical and Biophysical Research Communications 1144-1151 (1988).
Wainberg et al., Abstract, "Anti-HIV-1 Activity, Toxicity And Pharmacokinetics of Totally Novel Nucleoside Analogs," M.C.P.63, V International Conference on AIDS, Montreal, Quebec, Canada, Jun. 4-9, 1989.
Wainberg et al., "Characterization Of AZT-Resistant Isolates Of HIV-1: Susceptibility To Deoxythiacytidine And Other Nucleosides," VI International Conference On AIDS, San Francisco, California, vol. 3, Abstract S.B.87, p. 117 (1990).
Sandstrom et al., "Antiviral Therapy in AIDS: Clinical Pharmacological Properties and Therapeutic Experience to Date," 34 Drugs, pp. 372-390 (1987).
Varmus, "A Growing Role For Reverse Transcription," 299 Nature, pp. 204-205 (1982).
Belleau, deceased Bernard
Nguyen-Ba Nghe
Biochem Pharma Inc.
Flattmann, Jr. Gerald J.
Goldberg Jerome D.
McDonell Leslie A.
LandOfFree
Use of 1,3-oxathiolane nucleoside analogues in the treatment of does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use of 1,3-oxathiolane nucleoside analogues in the treatment of , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of 1,3-oxathiolane nucleoside analogues in the treatment of will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1506627