Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1998-05-04
2001-08-21
Lee, Howard C. (Department: 1623)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S415000, C546S193000, C546S194000, C546S257000, C546S279400
Reexamination Certificate
active
06277870
ABSTRACT:
TECHNICAL FIELD
The present invention relates to pharmaceutical compositions comprising a positive modulator of a nicotinic receptor agonist, said positive modulator having the capability to increase the efficacy of the said nicotinic receptor agonist.
BACKGROUND ART
Cholinergic receptors normally bind the endogenous neurotransmitter acetylcholine (ACh), thereby triggering the opening of ion channels. ACh receptors in the mammalian central nervous system can be divided into muscarinic (mAChR) and nicotinic (nAChR) subtypes based on the agonist activities of muscarine and nicotine, respectively. The nicotinic acetylcholine receptors are ligand-gated ion-channels containing five subunits (for reviews, see Colquhon et al. (1997) Advances in Pharmacology 39, 191-220; Williams et al. (1994) Drug News & Perspectives 7, 205-223; Doherty et al. (1995) Annual reports in Medicinal Chemistry 30, 41-50). Members of the nAChR gene family have been divided into two groups based on their sequences; members of one group are considered &bgr; subunits, while a second group are classified as &agr; subunits (for reviews, see Karlin & Akabas (1995) Neuron 15, 1231-1244; Sargent (1993) Annu. Rev. Neurosci. 16, 403-443). Three of the &agr; subunits, &agr;7, &agr;8 and &agr;9, form functional receptors when expressed alone and thus presumably form homooligomeric receptors.
An allosteric transition state model of the nAChR involves at least a resting state, an activated state and a “desensitized” closed channel state (Williams et al., supra; Karlin & Akabas, supra). Different nAChR ligands can thus differentially stabilize the conformational state to which they preferentially bind. For example, the agonists ACh and (−)-nicotine stabilize the active and desensitized states.
Changes of the activity of nicotinic receptors has been implicated in a number of diseases. Some of these, e.g. myasthenia gravis and ADNFLE (autosomal dominant nocturnal front lobe epilepsy) (Kuryatov et al. (1997) J. Neurosci. 17(23):9035-47), are associated with reductions in the activity of nicotinic transmission either through a decrease in receptor number or increased desensitization, a process by which receptors become insensitive to the agonist. Reductions in nicotinic receptors have also been hypothesized to mediate cognitive deficits seen in diseases such as Alzheimer's disease and schizophrenia (Williams et al., supra). The effects of nicotine from tobacco are also mediated by nicotinic receptors. Increased activity of nicotinic receptors may reduce the desire to smoke.
However, treatment with nicotinic receptor agonists which act at the same site as ACh is problematic because ACh not only activates, but also blocks receptor activity through processes which include desensitization (for a review, see Ochoa et al. (1989) Cellular and Molecular Neurobiology 9, 141-178) and uncompetitive blockade (open-channel block) (Forman & Miller (1988) Biophysical Journal 54(1):149-58). Furthermore, prolonged activation appears to induce a long-lasting inactivation. Therefore agonists of ACh can be expected to reduce activity as well as enhance it. At nicotinic receptors in general, and, of particular note, at the &agr;7-nicotinic receptor, desensitization limits the duration of current during agonist application.
REFERENCES:
patent: PCT/SE99/00700 (1989-04-01), None
patent: 96/06098 (1996-02-01), None
patent: 97/30998 (1997-08-01), None
patent: 99/03859 (1999-01-01), None
Kooyman et al, “5-Hydroxyindole slows desensitization of the 5-HT3receptor. . .” Br. J. Pharmacol. vol. 108, pp. 287-289 (1993).
Schrattenholz et al, “Agonist Responses of Neuronal Nicotinic Acetylcholine. . .” Molecular Pharmacology, vol. 49, pp. 1-6 (1996).
Kuntzweiler et al, rapid Assessment of Ligand Actions with Nicotinic AcetyLcholine Receptors Using Calcium Dynamics and FLIPR, Drug Development Research, Issued May 1, 1998, vol. 44, pp. 14-20, May.*
Ospina et al, Calcium Regulation of Agonist Binding to alpha 7-Type Nicotinic Acetylcholine Receptors in Adult and Fetal Rat Hippocampus, Journal of Neurochemistry, vol. 70, No. 3, Issued Mar. 1998.
Gurley David
Lanthorn Thomas
Astra AB
Lee Howard C.
Person Richard V
White Everett
LandOfFree
Use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2477238