Uplink detection of schedule mobiles for avoiding access delays

Telecommunications – Radiotelephone system – Auxiliary data signaling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S349000

Reexamination Certificate

active

06519469

ABSTRACT:

BACKGROUND
The present invention relates generally to radiocommunication systems and, more particularly, to techniques and structures for allowing a mobile telephone to quickly establish an uplink and downlink Medium Access Control transaction.
The growth of commercial communication systems and, in particular, the explosive growth of cellular radiotelephone systems worldwide, has compelled system designers to search for ways to increase system capacity and flexibility without reducing communication quality beyond consumer tolerance thresholds. Mobile calls for example, may be routed in a circuit switched fashion, a packet switched fashion, or some hybrid thereof. It has become increasingly desirable to couple and to integrate mobile cellular telephone networks, for instance a GSM network, to Internet protocol (IP) networks for call routing purposes. The routing of voice calls over IP networks is frequently termed “voice over IP” or, more succinctly, VoIP.
Packet-switched technology, which may be connection-oriented (e.g., X.25) or “connectionless” as in IP, does not require the set-up and tear-down of a physical connection, which is in marked contrast to circuit-switched technology. This reduces the data latency and increases the efficiency of a channel in handling relatively short, bursty, or interactive transactions. A connectionless packet-switched network distributes the routing functions to multiple routing sites, thereby avoiding possible traffic bottlenecks that could occur when using a central switching hub. Data is “packetized” with the appropriate end-system addressing and then transmitted in independent units along the data path. Intermediate systems, sometimes called “routers,” stationed between the communicating end-systems make decisions about the most appropriate route to take on a per packet basis. Routing decisions are based on a number of characteristics, including: least-cost route or cost metric; capacity of the link; number of packets waiting for transmission; security requirements for the link; and intermediate system (node) operational status.
FIG. 1A
shows representative architecture used for communicating across an air link that comprises the packet data protocols which provide connectivity between a mobile end system (M-ES), a mobile data base station (MDBS), and a mobile data intermediate system (MD-IS). An exemplary description of the elements in FIG.
1
A and an approach for each element when considering alternative RF technologies follows.
The Internet Protocol/Connectionless Network Protocol (IP/CLNP) are network protocols that are connectionless and widely supported throughout the traditional data network community. These protocols are independent of the physical layer and preferably are not modified as the RF technologies change.
The Security Management Protocol (SMP) provides security services across the air link interface. The services furnished include data link confidentiality, M-ES authentication, key management, access control, and algorithm upgradability/replacement. The SMP should remain unchanged when implementing alternative RF technologies.
The Radio Resource Management Protocol (RRMP) provides management and control over the mobile unit's use of the RF resources. The RRMP and its associated procedures are specific to the AMPS RF infrastructure and require change based on the RF technology implemented.
The Mobile Network Registration Protocol (MNRP) is used in tandem with a Mobile Network Location Protocol (MNLP) to allow proper registration and authentication of the mobile end system. The MNRP should be unchanged when using alternative RF technologies.
The Mobile Data Link Protocol (MDLP) provides efficient data transfer between the MD-IS and the M-ES. The MDLP supports efficient mobile system movement, mobile system power conservation, RF channel resources sharing, and efficient error recovery. The MDLP should be unchanged when using alternative RF technologies.
The Medium Access Control (MAC) protocol and associated procedures control the methodology M-ESs use to manage shared access to the RF channel. This protocol and its functionality is supplied by alternative RF technologies.
Evolving packet data systems which use the aforementioned protocols will likely support two types of RF channels for packet data transmissions: a packet control channel (PCCH) and a packet traffic channel (PTCH). The PCCH may be either a point-to-point or point-to-multipoint channel. It is this channel on which a mobile station camps (i.e., where the mobile reads broadcast and paging information and where the mobile has random access and reserved access opportunities). The PTCH, on the other hand, is a point-to-point, reserved access only, channel. As will be appreciated by those skilled in the art, an RF channel can provide either packet data services or voice services or can simultaneously provide both packet data and voice services.
FIG. 1B
illustrates a state diagram for a conventional mobile station operating, for example, in the protocol architecture illustrated in FIG.
1
A. Upon activation, a mobile station selects a PCCH on which to camp. If multiple PCCHs exist in a cell, then the mobile station selects one depending, for example, on the mobile station's identification. For instance, if the least significant bit of the mobile station's identification is 00, the mobile station will choose one PCCH; if the least significant bit is 01, it will choose another PCCH, etc. By selecting a PCCH in the above-described manner, paging traffic is spread out over the available PCCHs.
Upon a contention-based access from the mobile station, for the transmission of uplink data, or upon receiving mobile termination data from the network, for the transmission of downlink data, the network (via a base station) may direct the mobile station to tune to a specific PTCH for the establishment of a MAC transaction, e.g., a session for packet transmission. Once on a PTCH, the mobile station enters an active mode
101
and the network schedules resources for the specific mobile to complete the MAC transaction in a reserved access mode.
When the mobile has completed the MAC transaction and a configurable inactivity timer, typically residing in the mobile station, expires (generally after 1 second of inactivity), the mobile station leaves the reserved access mode of the PTCH and returns to camp on the original PCCH and eventually enters a sleep-mode
103
. When the mobile station is in a sleep-mode, the mobile station conserves battery life by periodically turning off, and then on, the power of its transceiver such that the PCCH is monitored on a periodic, and not constant, basis.
Upon the reception of additional downlink data from the network, if the mobile station has entered a sleep-mode, the base station will page the mobile station at a designated time slot in order to start a downlink MAC transaction. Alternatively, if the mobile station is not in a sleep-mode, i.e., is still active on the PTCH, the base station will start the MAC transaction at the next available reserved time slot.
Certain user services, e.g., VoIP, include sensitive time constraints over the reserved access channel. That is, delays in the transmission and/or receipt of successive packets can have noticeable and undesirable quality of service (QoS) effects, e.g., on voice quality.
For uplink MAC transactions, the delays in between successive packets can be caused by the mobile station having to wait for the next contention based access opportunity scheduled from the base station. The mobile station must also wait for the response of a requested contention based uplink access until it can utilize all of its capabilities. In addition, collisions may occur upon the contention based access opportunities. That is, if multiple mobile stations try to send MAC requests simultaneously, at least one of the mobiles will cease their request and delay until the next contention based opportunity. This cease and delay procure creates an unpredictable variance in the delay for successive MAC trans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Uplink detection of schedule mobiles for avoiding access delays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Uplink detection of schedule mobiles for avoiding access delays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uplink detection of schedule mobiles for avoiding access delays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.