Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals
Reexamination Certificate
2000-10-18
2002-06-04
Chin, Christopher L. (Department: 1641)
Chemistry: analytical and immunological testing
Involving an insoluble carrier for immobilizing immunochemicals
C436S528000, C436S540000, C436S546000, C436S164000, C436S169000, C436S172000, C436S177000, C436S800000, C436S805000, C435S970000, C435S973000, C435S007100, C435S007500
Reexamination Certificate
active
06399397
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates generally to detectable labels and compositions useful in assay methods for detecting soluble, suspended, or particulate substances or analytes such as proteins, carbohydrates, nucleic acids, bacteria, viruses, and eukaryotic cells and more specifically relates to compositions and methods that include luminescent (phosphorescent or fluorescent) labels.
Methods for detecting specific macromolecular species, such as proteins, drugs, and polynucleotides, have proven to be very valuable analytical techniques in biology and medicine, particularly for characterizing the molecular composition of normal and abnormal tissue samples and genetic material. Many different types of such detection methods are widely used in biomedical research and clinical laboratory medicine. Examples of such detection methods include: immunoassays, immunochemical staining for microscopy, fluorescence-activated cell sorting (FACS), nucleic acid hybridization, water sampling, air sampling, and others.
Typically, a detection method employs at least one analytical reagent that binds to a specific target macromolecular species and produces a detectable signal. These analytical reagents typically have two components: (1) a probe macromolecule, for example, an antibody or oligonucleotide, that can bind a target macromolecule with a high degree of specificity and affinity, and (2) a detectable label, such as a radioisotope or covalently-linked fluorescent dye molecule. In general, the binding properties of the probe macromolecule define the specificity of the detection method, and the detectability of the associated label determines the sensitivity of the detection method. The sensitivity of detection is in turn related to both the type of label employed and the quality and type of equipment available to detect it.
For example, radioimmunoassays (RIA) have been among the most sensitive and specific analytical methods used for detecting and quantitating biological macromolecules. Radioimmunoassay techniques have been used to detect and measure minute quantities of specific analytes, such as polypeptides, drugs, steroid hormones, polynucleotides, metabolites, and tumor markers, in biological samples. Radioimmunoassay methods employ immunoglobulins labeled with one or more radioisotopes as the analytical reagent. Radiation (&agr;, &bgr;, or &ggr;) produced by decay of the attached radioisotope label serves as the signal which can be detected and quantitated by various radiometric methods.
Radioisotopic labels possess several advantages, such as: very high sensitivity of detection, very low background signal, and accurate measurement with precision radiometric instruments (scintillation and gamma counters) or with inexpensive and sensitive autoradiographic techniques. However, radioisotopic labels also have several disadvantages, such as: potential health hazards, difficulty in disposal, special licensing requirements, and instability (radioactive decay and radiolysis). Further, the fact that radioisotopic labels typically do not produce a strong (i.e., non-Cerenkov) signal in the ultraviolet, infrared, or visible portions of the electromagnetic spectrum makes radioisotopes generally unsuitable as labels for applications, such as microscopy, image spectroscopy, and flow cytometry, that employ optical methods for detection.
For these and other reasons, the fields of clinical chemistry, water and air monitoring, and biomedical research have sought alternative detectable labels that do not require radioisotopes. Examples of such non-radioactive labels include: (1) enzymes that catalyze conversion of a chromogenic substrate to an insoluble, colored product (e.g., alkaline phosphatase, &bgr;-galactosidase, horseradish peroxidase) or catalyze a reaction that yields a fluorescent or luminescent product (e.g., luciferase) (Beck and Koster (1990)
Anal. Chem.
62: 2258; Durrant, I. (1990)
Nature
346: 297;
Analytical Applications of Bioluminescence and Chemiluminescence
(1984) Kricka et al. (Eds.) Academic Press, London), and (2) direct fluorescent labels (e.g., fluorescein isothiocyanate, rhodamine, Cascade blue), which absorb electromagnetic energy in a particular absorption wavelength spectrum and subsequently emit visible light at one or more longer (i.e., less energetic) wavelengths.
Using enzymes and phosphorescent/fluorescent or calorimetric detectable labels offers the significant advantage of signal amplification, since a single enzyme molecule typically has a persistent capacity to catalyze the transformation of a chromogenic substrate into detectable product. With appropriate reaction conditions and incubation time, a single enzyme molecule can produce a large amount of product, and hence yield considerable signal amplification. However, detection methods that employ enzymes as labels disadvantageously require additional procedures and reagents in order to provide a proper concentration of substrate under conditions suitable for the production and detection of the colored product. Further, detection methods that rely on enzyme labels typically require prolonged time intervals for generating detectable quantities of product, and also generate an insoluble product that is not attached to the probe molecule.
An additional disadvantage of enzyme labels is the difficulty of detecting multiple target species with enzyme-labeled probes. It is problematic to optimize reaction conditions and development time(s) for two or more discrete enzyme label species and, moreover, there is often considerable spectral overlap in the chromophore endproducts which makes discrimination of the reaction products difficult.
Fluorescent labels do not offer the signal amplification advantage of enzyme labels, nonetheless, fluorescent labels possess significant advantages which have resulted in their widespread adoption in immunocytochemistry. Fluorescent labels typically are small organic dye molecules, such as fluorescein, Texas Red, or rhodamine, which can be readily conjugated to probe molecules, such as immunoglobulins or
Staph. aureus
Protein A. The fluorescent molecules (fluorophores) can be detected by illumination with light of an appropriate excitation frequency and the resultant spectral emissions can be detected by electro-optical sensors or light microscopy.
A wide variety of fluorescent dyes are available and offer a selection of excitation and emission spectra. It is possible to select fluorophores having emission spectra that are sufficiently different so as to permit multitarget detection and discrimination with multiple probes, wherein each probe species is linked to a different fluorophore. Because the spectra of fluorophores can be discriminated on the basis of both narrow band excitation and selective detection of emission spectra, two or more distinct target species can be detected and resolved (Titus et al. (1982)
J. Immunol. Methods
50: 193; Nederlof et al. (1989)
Cytometry
10: 20; Ploem, J. S. (1971)
Ann. NY Acad. Sci.
177: 414).
Unfortunately, detection methods which employ fluorescent labels are of limited sensitivity for a variety of reasons. First, with conventional fluorophores it is difficult to discriminate specific fluorescent signals from nonspecific background signals. Most common fluorophores are aromatic organic molecules which have broad absorption and emission spectra, with the emission maximum red-shifted 50-100 nm to a longer wavelength than the excitation (i.e., absorption) wavelength. Typically, both the absorption and emission bands are located in the UV/visible portion of the spectrum. Further, the lifetime of the fluorescence emission is usually short, on the order of 1 to 100 ns. Unfortunately, these general characteristics of organic dye fluorescence are also applicable to background signals which are contributed by other reagents (e.g., fixative or serum), or autofluorescence or the sample itself (Jongkind et al. (1982)
Exp. Cell Res.
138: 409; Aubin, J. E. (1979)
J. Histochem. Cytochem.
27: 36). Autofluorescence of optical lenses
Dyer Mark J.
Faris Gregory W.
Kane James
Ng Steve Y.
Peppers Norman A.
Chin Christopher L.
Do Pensee
SRI - International
LandOfFree
Up-converting reporters for biological and other assays... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Up-converting reporters for biological and other assays..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Up-converting reporters for biological and other assays... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2920111