Unloader tube upper pivot support mechanism

Material or article handling – Self-loading or unloading vehicles – Conveyor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06247886

ABSTRACT:

BACKGROUND OF THE INVENTION
It is known to provide agricultural vehicles such as combines with a container for temporarily storing grain that the combine has harvested and threshed. Operatively connected with these containers are unloading tubes through which the grain from the container passes during grain unloading operations. An auger is typically positioned within the unloading tube for directing grain from the container into and through the unloading tube. As grain is unloaded from the combine's grain container through the unloading tube in this manner the grain is expelled into a truck or grain cart traveling next to the combine.
Many conventional unloading tubes include a generally upright lower portion operatively connected with and extending upwardly from a lower portion of the combine grain container. An upper portion of the unloader tube extends generally horizontally and is operatively coupled with the upper end portion of the upright portion. Augers are typically positioned within the lower and upper portions of the unloader tube. A gearbox is provided at the junction of the upper and lower portions of the unloader tube for operatively connecting the auger sections in the two portions of the unloader tube.
Conventional unloader tubes are adapted to pivot between two positions about the central axis of the lower portion of the tube. In a first position the upper portion of the unloader tube is positioned generally longitudinally with respect to the vehicle and is located in close proximity along the side of the vehicle, as shown in FIG.
1
. The unloader tube can be swung outwardly from this position about the central axis of the lower portion to a position whereat the upper portion of the tube extends generally laterally outwardly from the side of the combine. The outer end of the unloader tube is positioned relatively high in the air such that a grain truck or cart can be positioned under the end of the tube to receive the grain being propelled from the tube.
The unloader tubes tend to be relatively heavy structures, since they house the augers and bear a large amount of weight when they carry heavy amounts of grain during operation. The unloader tubes must therefore be braced to withstand these forces during operation. The lower portion of the unloader tubes are held firmly in position by a sturdy support ring structure that supports the lower portion of the tube and allows the unloader to tube to pivot. Conventional combines also typically include an upper support structure above the tube's lower portion. The upper support mechanism helps keep the lower portion of the tube generally upright and helps keep the lower portion from toppling over due to the weight of the tube, augers and grain within the tube.
One type of conventional upper support mechanism includes a pin member closely aligned with the axis of the lower portion of the unloader tube. The pin is received within a tubular structure fixed with the side of the combine. The lower portion of the tube is manufactured and assembled to relatively exact tolerances so that the pin member is relatively precisely located in alignment with the axis of the lower portion of the tube. Also, the tubular structure and the brackets which hold it in place are manufactured and assembled to relatively exact tolerances so that the axis of the tubular structure is held in position in relatively precise alignment with the axis of the pin member. The processes of manufacturing and assembling all these parts to exact tolerances are relatively costly and time consuming, and raises the complexity and cost of the combine.
Another type of conventional upper support mechanism includes a metal pin member generally aligned with the axis of the lower portion of the unloader tube. The lower portion of the tube is not manufactured or assembled to exact tolerances, so the pin may be slightly misaligned from the axis of the lower portion of the unloader tube. This misalignment can cause the pin to shift in various directions as the unloader tube swings between its two positions. The pin is slidably received within a metal bearing member held within a metal housing. The bearing is free to swivel within the metal housing, and the pin is free to slide up and down within the bearing member. Therefore misalignment of the pin and housing member from the exact axis of the lower portion of the unloader tube is compensated for by the freedom of motion of the pin with respect to the housing member. This type of upper support mechanism is relatively inexpensive to manufacture and assemble since it is not manufactured to exact tolerances. However, the metal bearing member swivels in contact with the metal housing member, and the pin slides in contact with the bearing, and therefore the support requires lubrication so as to avoid excessive wear. This type of upper support mechanism therefore requires regular maintenance so that lubrication can be applied to the bearing surfaces within the structure.
It would therefore be desirable to provide an upper support mechanism which helps retain a combine unloader tube in its proper upright position during operation such as when filled with grain, and which does not require lubrication at regular intervals. It would also be desirable for such a mechanism to not require manufacturing or assembly processes having exact tolerences. It would be desirable for such a mechanism to allow for motion that might occur due to slight misalignments of the upper support structure from the actual axis of the lower portion of the unloader tube. It would be desirable to reduce the cost and complexity of the assembly process and the mechanism itself.
SUMMARY OF THE INVENTION
The preferred embodiment of the present invention is an upper support for a combine auger unloader tube, and includes a ball mechanism fixed atop the unloader tube. The ball member is swivellably received within a generally spherical socket formed by a bushing member made of an ultra high molecular weight polyethylene material. The bushing is slidably received within a generally cylindrical opening formed in a sleeve that is fixed to the side of the combine. The bushing is allowed to slide up and down within the cylindrical opening in the sleeve. The swivelling motion allowed by the ball and socket arrangement and the up and down motion allowed by the bushing within the cylindrical opening of the sleeve accommodate motion of the unloader tube associated with the upper support mechanism being slightly offcenter with respect to the pivot axis of the unloader tube. Therefore, the unloader tube and upper support mechanism can be manufactured with less than exact tolerances, which reduces the complexity of the mechanism and the cost of manufacturing.
The bushing is comprised of a material such as ultra high molecular weight polyethylene that can rub in contact with a smooth metal surface generally without requiring lubrication to prevent wearing. The bushing according to the present invention generally does not require lubrication between the contact surfaces of the ball mechanism and the spherical opening in the bushing, or between the contact surfaces of the bushing and the cylindrical opening in the sleeve. Therefore, routine maintenance procedures of regularly lubricating an upper support mechanism are generally eliminated.
The bushing is formed of two halves that fit snuggly together around the ball mechanism during the assembly process. The design of the two halves allows the parts to be formed with manufacturing processes that are relatively simple and cost effective. When snapped together the two halves form the spherical opening in the center of the bushing which swivellably receives the ball mechanism during operation. Pegs and mating openings formed in the two halves retain the two parts together when snapped onto the ball mechanism. The surface of the cylindrical opening in the sleeve also serves to confine the two parts of the bushing and in abutment with each other during operation.


REFERENCES:
patent: 4093087 (1978-06-01), DeCoene
pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Unloader tube upper pivot support mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Unloader tube upper pivot support mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unloader tube upper pivot support mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.