Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part
Reexamination Certificate
2001-05-14
2002-09-17
Bradley, P. Austin (Department: 2833)
Electrical connectors
With insulation other than conductor sheath
Plural-contact coupling part
Reexamination Certificate
active
06450838
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an electrical connector arrangement and, more particularly, to a modular connecting apparatus, such as is used as a component of communication equipment, and having substantially universal application by virtue of its configuration for use in either a vertical or horizontal orientation.
BACKGROUND OF THE INVENTION
Telecommunications and data transmission systems are increasingly being called upon to operate at higher and higher frequencies with tremendous growth in signaling traffic. Present day cables and wiring can, theoretically, handle such increased frequencies and traffic, but, as in the case of eight or twelve lead conductors, the proximity of such a number of wires can lead to degradation in performance of the connector and corresponding degradation of transmitted signals. For example, one problem inherent in increasing frequencies and conductor proximity is cross-talk. At frequencies above one megahertz (1 MHz), for example, the degradation of the signals can be, and most often is, unacceptable. Consequently, emphasis has been placed on designing connectors which themselves have, for example, conductor arrangements or configurations that minimize cross-talk within or produced by the connector. It has been found that connectors which comprise a jack and a dielectric spring block or plug can be configured to yield excellent performance with a minimum of cross-talk. Such an approach to improved performance requires, in most cases, specific redesigns or modifications of existing hardware and/or production of new hardware. Modifications or redesigns of existing hardware or the design and development of new hardware represent additional expenses, and result in a plethora of specialized plugs or jacks.
It has been found that the cross-talk coupling induced by the present-day standardized modular jack and plug can be reduced. Such a reduction involves the judicious placement of conductors after they exit the connector (jack and spring block or plug) so as to prompt cross-talk signals of opposite phase or polarity to those that are induced inside the connector.
A preferred way of inducing the cross-talk coupling is accomplished by having the conductors exit from the modular connector to a printed wiring board (PWB) thereby routing the conductors in a manner that produces a net reduction in cross-talk. Because of the flexibility for routing wiring inherent in PWB architecture, there are numerous printed circuit board arrangements that will reduce cross-talk, as well as achieve other transmission benefits.
In U.S. Pat. No. 5,700,167 to Pharney et al. there is shown one such arrangement wherein the leads extending from the rear of the spring block plug directly into contact holes in a vertically oriented PWB. The individual leads are thus connected to circuitry on the PWB that is routed to produce a net reduction in cross-talk. While the arrangement of the Pharney patent is directed primarily to a PWB that produces compensating cross-talk, such a PWB/connector configuration can be used in numerous other applications not necessarily directed to improvement in overall cross-talk performance.
In U.S. Pat. No. 5,885,110 to Ensz et al., it is shown to configure the passages extending through a spring block. Similarly, in U.S. Pat. No. 6,012,936 to Siemon et al., a switching jack is configured with passages situated therethrough and conductors that extend through the rear of the switching jack. Ostensibly, the configuration of the Siemon switching jack allows for a smaller sized, single opening jack that can be mounted to a circuit board in space-constrained applications. However, the Siemon jack cannot be selectively oriented for vertical or horizontal PWB orientations and requires separate connector configurations to accommodate PWB orientation.
As pointed out hereinbefore, the prior art contains numerous connector/PWB arrangements. In some of these arrangements the PWB is oriented in a plane that is normal to the centerline of the connector. In other arrangements the PWB is oriented in a plane that is parallel to the connector centerline. For each of these arrangements, the different orientation of the plane of the PWB relative to the connector centerline requires a specifically designed connector in those instances where the connector is, in effect, mounted directly on the PWB.
It is inconvenient and costly to maintain these specifically designed connectors. For instance, such specialized connectors require additional design resources, particular molds and tools (especially for injection molding of the plastic components), wire stamping and forming tools, and different electrical designs on the PWBs in order to meet the requirements to transmit data or other signals at growing performance levels. Further, a plurality of different specialty connectors places a burden on an assembler to stock and differentiate between many types of connectors during production, thus increasing inventory and expense.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
SUMMARY OF THE INVENTION
The present invention comprises a universal modular connector having a dielectric spring block and a jack housing for receiving the spring block. The present connector is universal in that it is configured for use with either a horizontally oriented PWB or a vertically oriented PWB. Thus, only one set of parts, i.e. the spring block and jack, are necessary for use with a PWB of either horizontal or vertical orientation.
In a preferred embodiment of the present invention, the spring block has passages extending therethrough and a first and second array of parallel conductors. The first and second arrays of parallel conductors extend from the nose, or spring contact end, to the rear, or connection end, of the spring block. At the spring contact end of the spring block, the first and second arrays of conductors slope down and away therefrom in cantilever fashion to form a single planar array of spring contacts. The conductor arrays are vertically spaced from each other and the conductors in the first array are transversely offset from the conductors in the second array. Such a configuration makes it possible to separate the conductors from each other within the miniaturized spring block, and reduce, at least to some extent, the generation of cross-talk. It is anticipated that the passages may take the form of slots or bores extending through the block. It is further anticipated that the conductor configuration is applicable for the typical numbers of four, eight, ten or twelve conductors.
At the rear or end of the spring block are a plurality of slots communicating with the passages and extending upward from the lower one of the conductor arrays and along a portion of the top of the block. Thus, each of the conductors in the lower array, which normally extends beyond the rear of the block, can be bent such that the conductors extend from the top of the block at ninety degrees (90°) to accommodate a vertical orientation of the conductors as opposed to a horizontal orientation. The bending of the conductors to the correct degree for implementation in the vertical orientation is determined by a slanted surface configured into the slots or passages of the spring block. The slanted surface is at an angle Ø to the vertical (or 90° +Ø). Accordingly, when the conductors are bent to the vertical orientation, the slanted surface allows the conductor to be bent through 90° +Ø to insure that the conductor's natural resilience will cause it to stabilize at 90°.
In the horizontal orientation, the two arrays are vertically spaced such that there is a bottom and a top array. When the conductors are transformed from the horizontal orientation to the vertical orientation, the bottom array becomes the front array and the top array becomes the rear array. This is accomplished by the configuration of the first and second groups of passages extending from the spring block end to the connector end which acco
Avaya Inc.
Bradley P. Austin
Gushi Ross
Thomas Kayden Horstemeyer & Risley LLP
LandOfFree
Universally configurable modular connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universally configurable modular connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universally configurable modular connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2886333