Communications: electrical – Continuously variable indicating
Reexamination Certificate
1998-08-31
2001-01-30
Horabik, Michael (Department: 2735)
Communications: electrical
Continuously variable indicating
C340S870020, C340S870310, C340S010100, C343S866000
Reexamination Certificate
active
06181257
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The invention relates to an apparatus and method for metering, storing, transmitting, and recording consumption of a utility; in particular to an apparatus and method that can respond and transmit an emulated usage data signal to readers manufactured by other vendors or universally decipher a signal transmitted by utility usage transponders manufactured by other vendors.
BACKGROUND OF THE INVENTION
The current evolution in electronic devices has made it possible to manufacture utility usage metering systems that store and transmit customer utility usage to a hand-held reader or to a remote data gathering system. These systems generally consist of a some form of mechanical register which meters the actual utility usage coupled to an electronic transponder or a combination electronic register and transponder that sends the utility usage data contained within the register to a reader or remote data gathering system. Utility companies that supply gas, water and electricity have been using a combination of hand-held readers (carried from point to point by a meter-reader), transportable readers (carried in a truck and using radio frequency signals) and remote data gathering systems (transmitted over telephone lines or the like) to record utility usage by commercial customers.
A myriad of manufactures currently produce these utility metering systems with no regard to a standardized usage signal. For example, in the area of water meters, there are two major suppliers mechanical meters and associated electronic transponders and approximately four minor suppliers of mechanical meters which use one of three types of combination electronic register and transponder manufactured by independent minor suppliers. This means that there are at least five different electronic signals, or protocols, which indicate water utility usage none of which are compatible with each other. In reality there are more non-compatible systems, if one includes foreign manufactures and other small domestic manufactures. Looking at the utility metering industry as a whole, one must include electricity and gas meters. These metering systems also have their own data communication protocol.
The problem with non-compatible protocols becomes most acute in water utilities because most of these utility systems are owned by local governments. Thus, once a utility system decides to go to an electronic metering system, that utility system is restricted to a single supplier. Governmental entities do not like to be restricted to a single supplier as improprieties could exist or be suspected by local citizens. For a private utility system, such as a “publicly or privately” held electric or gas company, the single supplier syndrome is not present; however, it would be better for the utility company to have a choice of meter/transponder/reader systems.
Finally, with the age of the “information super highway” incompatible protocols will make the procedure of linking utility usage systems almost impossible. One simple answer would be for the industry as a whole to devise an industry wide standard similar to the American Standard for Computer Information Interchange (ASCII) used by the computer industry. This will probably happen in the near future, but the cost of retrofitting existing utility usage meters and transponders with compatible transponders will be prohibitively high.
The utility supply industry is actively looking for an approach to “second source” suppliers of meter/transponder/reader systems. Metropolitan (city owned) water systems have demanded that the meter industry provide a means for alternate manufactures to supply devices that can be read or can read existing devices. Some cross licensing between major suppliers has occurred and the market is producing meter reader devices that will read another manufacturer's device; however, the market is not producing a device that will store utility usage and universally respond and transmit data to any manufacture's reader or remote data gathering system.
The instant invention provides a device that will gather water utility usage from a mechanical meter, respond, and transmit a protocol that can be universally read. The device can be installed with new meters or can be easily retrofitted to existing meters. The device therefore satisfies the “second source” requirement. Further, the device can readily be modified to operate in conjunction with any type of mechanically based utility usage meter such as used to meter oil, gas, electricity, steam, etc.
PRIOR ART
The prior must examined from two perspectives:
systems using a hand-held portable reader, and
systems using remote data gathering.
Unfortunately, for the reasons given above, the hand-held systems have been extensively developed for water metering, and gas metering, and electricity metering with no regard to compatibility. The systems are essentially the same, for they are based around a mechanical meter which passes information to an electronic transponder, which then passes data to the hand-held unit. The remote data gathering systems (often referred to as automatic meter reading) have approached the art from a more general view point and consider different utilities.
Utility companies have long recognized the need for direct entry utility usage recordation rather than manually reading a meter, recording the usage, and then transferring the handwritten data to a central billing operation. The initial direct entry systems had a plug on the meter into which an opposite mating plug on a reader was inserted. The reader would then poll the meter, read the position of the mechanical dials and record this reading on paper, magnetic tape, or similar hard data recordation system. The reader was in turn polled at the central office and billing operations continued. The systems which used these mechanical plugs were unreliable because the meter plug would corrode. Systems were then developed to protect the plug but these continued to prove unsatisfactory.
An early effort to use well known electrical principals to eliminate the mechanical plug was disclosed in a 1979 patent to White (U.S. Pat. No. 4,132,981). White discloses a Self-Powered System for Measuring and Storing Consumption of [a] Utility Meter, which uses both mutual inductive coupling and optical coupling, to transfer an interrogation signal from and to send the mechanical position of dials within the utility usage meter to a hand-held reader. The interrogation signal, or wake-up call, is sent to the utility usage meter via magnetic or mutual inductive coupling. That is, the reader sends an electrical pulse to a reader head which is essentially a coil of wire. The electromagnetic effect causes a time varying electromagnetic field to exist in the general area of the reader coil. The reader head is positioned near a corresponding coil on the meter transponder which senses the electromagnetic field to produce a time varying electric current. This effect is better known as mutual inductive or magnetic coupling. This physical phenomena transfers the electric pulse from the reader head coil to the meter (transponder) coil. This wake-up pulse is of sufficient amplitude that considerable energy is transferred to the transponder. This energy, in the form of electric power, is stored within capacitors and provides power to the transponder. The transferred power allows the transponder to read the position of the mechanical dials and send a synchronized data signal back to the reader which reflects the meter reading.
At the time that White developed his invention, an optical link was chosen to transfer meter data back to the reader. White discloses, but never claims, that the same mutual inductive or magnetic coupling effect could be used to transfer the data signal; however, due to synchronization considerations, optical coupling was the preferred and claimed technique of transferring the data signal. White solved the problem of mechanical corrosion, but the White optical link would become dirty and data transfer could beco
Meek Jean L.
Sparks J. Travis
Alworth C. W.
Edwards, Jr. Timothy
Horabik Michael
Kemp-Meek Manufacturing, Inc.
LandOfFree
Universal utility usage data gathering system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal utility usage data gathering system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal utility usage data gathering system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2538963