Universal multi-functional common conductive shield...

Electricity: electrical systems and devices – Safety and protection of systems and devices – High voltage dissipation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C301S056000, C301S058000, C301S091000

Reexamination Certificate

active

06636406

ABSTRACT:

TECHNICAL FIELD
BACKGROUND OF THE INVENTION
The present invention relates to a layered, universal, multi-functional common conductive shield structure with conductive feed-thru or by-pass pathways for circuitry and energy conditioning that also possesses a commonly shared and centrally positioned conductive pathway or electrode that can simultaneously shield and allow smooth energy interaction between grouped and energized conductive pathway electrodes. The invention, when energized, will allow the contained conductive pathways or electrodes to operate with respect to one another harmoniously, yet in an oppositely phased or charged manner, respectively. When placed into a circuit and energized, the invention will also provide EMI filtering and surge protection while maintaining an apparent even or balanced voltage supply between a source and an energy utilizing-load. The invention will also be able to simultaneous and effectively provide energy conditioning functions that include bypassing, energy and signal decoupling, energy storage, and continued balance in Simultaneous Switching Operations (SSO) states of integrated circuit gate. These conditioning functions are all provided without contributing disruptive energy parasitics back into the circuit system as the invention is passively operated within the circuit.
Electrical systems have undergone short product life cycles over the last decade. A system built just two years ago can be considered obsolete to a third or fourth generation variation of the same application. Accordingly, passive componentry and circuitry built into these the systems need to evolve just as quickly. However, the evolvement of passive componentry has not kept pace. The performance of a computer or other electronic systems has typically been constrained by the frequency operating speed of its slowest active elements. Until recently, those elements were the microprocessor and the memory components that controlled the overall system's specific functions and calculations. However, with the advent of new generations of microprocessors, memory components and their data, the focus has changed. There is now intense pressure upon the industry to provide the system user with increased processing power and speed at a decreasing unit cost. EMI created in these environments must also be eliminated or minimized to meet international emission and/or susceptibility requirements. Since 1980, the typical operating frequency of the mainstream microprocessors has increased approximately 240 times, from 5 MHz (million cycles per second) to approximately to 1200 MHz+ by the end of the year 2000. Processor frequency operating speed is now matched by the development and deployment of ultra-fast RAM architectures. These breakthroughs have allowed boosting of overall system frequency operating speeds of the active componentry past the 1 GHz mark. During this same period, however, passive componentry technologies have failed to keep up with these new breakthroughs and have produced only incremental changes in composition and performance. These advances in passive component design and changes have focused primarily upon component size reduction, slight modifications of discrete component electrode layering, dielectric discoveries, and modifications of device manufacturing techniques or rates of production that decrease unit production cycle times.
In the past, system engineers have solved design problems by increasing the number of passive components placed into the electrical circuit. These solutions generally have involved adding inductors and resistors that are used with prior art capacitors to perform separate functions such as filtering, decoupling, and surge protection. Although there have been a few devices that are able to perform more than one function simultaneously, these devices consist of passive networks that require additional supporting componentry.
Not to be overlooked, however, is the existence of a major limitation in the line conditioning ability of these passive networks and prior art single passive components. This limitation presents both an obstacle for technological progression and an obstacle for economic growth in the electronic and computer industry and remains as one of the last remaining challenges of the +GHz speed systems. The focus of constraint to high-speed system performance is centered upon the physical architectural limitations that make-up the supporting passive componentry that in turn helps deliver and condition the propagated energy and data signals going to and from the processors, memory technologies, and those additional systems located outside of a particular electronic system.
A single passive component generally has a physical functional line conditioning limitation of between 5 and 250 MHz. At higher frequencies, for the most part, a load still requires combinations of discrete passive elements for “lump” elements such as various L-C-R, L-C, and R-C networks to shape or control energy delivered to the system load. However, at frequencies above 200-250 MHz, these prior art, discrete L-C-R, L-C, R-C networks begin to take on characteristics of transmission lines and even microwave-like features rather than providing lump capacitance, resistance or inductance that such a network was designed for. This performance disparity has appeared in the form of circuit system anomalies or failures over the last 2-3 years in circuitry between the higher operating frequency of microprocessors, clocks, power delivery bus lines, and memory systems, and that of the supporting passive elements, has resulted in system failures.
Additionally, at these higher frequencies, energy pathways should normally be grouped or paired as an electrically complementary element or elements that work together electrically and magnetically in harmony and in balance within an energized system. Attempts to line condition propagating energy with prior art componentry has led to increased levels of interference in the form of EMI, RFI, and capacitive and inductive parasitics. These increases are due in part to imbalances and performance deficiencies of the passive componentry that create or induce interference into the associated electrical circuitry. This has created a new industry focus on passive componentry whereas, only a few years ago, the focus was primarily on the interference created by the active components from sources and conditions such as voltage imbalances located on both sides of a common reference or ground path, spurious voltage transients from power surges, human beings, or other electromagnetic wave generators.
At higher operating speeds, EMI can also be generated from the electrical circuit pathway itself, which makes shielding from EMI desirable. Differential and common mode noise energy can be generated and will traverse along and around cables, circuit board tracks or traces, and along almost any high-speed transmission line or bus line pathway. In many cases, energy fields that radiate from these critical energy conductors act as an antenna, hence aggravating the problem even more. Other sources of EMI interference are generated from the active silicon components as they operate or switch. These problems such as SSO are notorious causes of circuit disruptions. Other problems include unshielded and parasitic energy that freely couples upon or onto the electrical circuitry and generates significant interference at high frequencies.
Other disruptions to a circuit derive from large voltage transients, as well as ground loop interference caused by varying ground potentials, which can render a delicately balanced computer or electrical system, useless. Existing surge and EMI protection devices have been unable to provide adequate protection in a single integrated package. Varieties of discrete and networked lump filters, decouplers, surge suppression devices, combinations, and circuit configurations have proven ineffectual as evidenced by the deficiency of the prior art.
U.S. patent application Ser. No. 09/561,283 filed on Apr. 28, 2000 a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Universal multi-functional common conductive shield... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Universal multi-functional common conductive shield..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal multi-functional common conductive shield... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.