Electric lamp and discharge devices: systems – Plural load device systems – Electric switch in the supply circuit
Reexamination Certificate
2000-09-19
2003-04-15
Philogene, Haissa (Department: 2821)
Electric lamp and discharge devices: systems
Plural load device systems
Electric switch in the supply circuit
C315S312000, C315S362000, C315S307000
Reexamination Certificate
active
06548967
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to computer networks and lighting systems. More particularly, the invention relates to devices, methods and systems for integrating illumination with data manipulation and transmission functions for lighting devices and network devices, as well as methods for using the foregoing.
BACKGROUND OF THE INVENTION
The advent of computer networks has provided users with a host of capabilities that were previously unavailable. Distributed users can communicate data using local area networks, wide area networks, and global networks, such as the Internet. Computer software programs running on computers at geographically remote locations can store, manipulate and retrieve data, including data sent from other locations. Thus, computer networks provide benefits of computing power without requiring a large computer at every point at which data is gathered, retrieved or displayed. For this reason, computer networks have become widespread in many commercial environments, such as corporate offices, factories, and the like. Computer networks are now installed in other locations as well, such as homes, retail environments, and the like. However, current computer network technology suffers a number of significant limitations that inhibit its use in non-traditional environments, such as retail store locations and homes.
A major problem with current computer network technology is the need for wiring. Most modem buildings are strung throughout with a plethora of wires and cords: computer cables, telephone wires, electrical lines, speakers, security systems, alarm systems, cable television and modems, and others. This complexity results in a variety of problems. During repairs, the appropriate set of wires must be sorted from each other. Frayed wires can short circuit and start fires, a problem compounded by the presence of multiple wire systems. New systems are frequently developed, often requiring a new wiring system. New wiring systems can be expensive to install in existing structures, because such systems are generally placed within the walls, and the installation is generally either invasive, requiring tearing up and patching walls, or complicated, with wires being gradually and gingerly eased throughout the maze of wires, pipes, and supports located behind the walls. Thus, computer networks that require significant wiring inhibit installation in environments where that wiring is difficult or unsightly (such as a retail environment) or where expertise is not available (such as in a typical home).
Another problem with current computer networks is that many of these systems are under control of a processor, such as a computer, or have the potential for such control. Most often, though, these systems are separate, with individual control systems. This separation also makes it more difficult and expensive to update existing systems, either to install a control system, or to take advantage of an improved, modernized control system that becomes available. Although one system may include components that would be useful to another system, the systems often remain separate. Thus, there exists a need to bring these disparate systems under common control simplifying updating these systems, and potentially reducing the multiplicity of wires coursing through the walls, ceilings, and floors. Not only might a unified system be more efficient, but presently isolated systems could make use of components of other systems in a mutual fashion, providing significant overall benefit.
Another problem with current computer networks is that current wiring techniques inhibit installation of many devices at convenient locations. For example, wiring that comes through phone outlets is not typically suitable for placement of networked devices such as cameras, that requiring a line of sight to an item to be viewed from a remote location, without requiring significant additional wiring within the room in which the camera is located. Thus, a wiring scheme that provides more convenient locations for networked devices is desirable.
Although such universal systems have been considered, current proposals would require significant installation costs, such as adding new wires or changing existing wiring. Accordingly, a need continues for a universal device that can provide computer networking functionality at a wide variety of locations without requiring significant rewiring.
SUMMARY OF THE INVENTION
The systems and methods described herein relate to lighting devices which include a lighting element and a microprocessor. The lighting element may include, in various embodiments, a light emitting semiconductor, such as a light emitting diode or other similar device, or any of a wide variety of other lighting elements. Use of the terms LED, or light emitting diode, herein, should be understood to encompass any light emitting semiconductor or other lighting element, except where the context precludes such an understanding. In embodiments, the devices further include one or more connections for attaching additional electronic components. In embodiments, the connections permit interchangeable use of modular components on a device. In certain embodiments, the lighting devices permit communication between the components and the microprocessor, e.g., to permit control of the lighting element based on input from sensor components, or facilitate electronic communication by mediating the transmission of signals to or from other devices. In certain embodiments, such communication is facilitated by utilizing a network of lighting devices. In certain embodiments, the lighting device is adapted to be interchangeable with a traditional lighting element, such as a halogen bulb, an Edison mount (screw-type) bulb, a fluorescent bulb, etc.
In another embodiment, a system according to the principles of the invention provides LED's whose outputs can provide ordinary lighting while being modulated at high speed for wireless communication. In one embodiment, LED intensity can be controlled by controlling the duty cycle of a control signal, while a higher rate modulation scheme is used encode independent data in the same control signal. When employing the LEDs for data communication, the invention, in one embodiment, utilizes wireless data transmission/reception with networking capabilities to permit the LEDs to communicate with several different devices within a network. These devices are fitted with signal receivers that can decode data in optical signals from the LEDs.
Provided herein are multifunctional lighting devices. The devices may include various element, such as a substrate carrying a plurality of electrical connections coupled to a power adapter, one or more lighting elements or elements, coupled to an electrical connection, for emitting light, one or more sensors for generating or modulating an electrical signal based on an external stimulus, and a processor, coupled to an electrical connection, for processing signals from the sensor.
The lighting elements can be light emitting semiconductors, LEDs, or other lighting elements. The processor can be a microprocessor. The sensor can be any sensor for sensing any environmental condition, ranging from any electromagnetic signals to acoustic signals to biological or chemical signals to other signals. Examples include an IR detector, a camera, a motion detector, an ozone detector, a carbon monoxide detector, other chemical detectors, a proximity detector, a photovoltaic sensor, a photoconductive sensor, a photodiode, a phototransistor, a photoemissive sensor, a photoelectromagnetic sensor, a microwave receiver, a UV sensor, a magnetic sensor, a magnetoresistive sensor, and a position sensor.
The sensors can be sensitive to temperature. For example, the sensor might be a thermocouple, a thermistor, a radiation pyrometer, a radiation thermometer, a fiber optic temperature sensor, a semiconductor temperature sensor, and a resistance temperature detector. The sensor might also be sensitive to sound, e.g., a microphone, a piezoelectric material, or
Blackwell Michael K.
Dowling Kevin J.
Lys Ihor A.
Morgan Frederick M.
Color Kinetics, Inc.
Philogene Haissa
Wolf Greenfield & Sacks P.C.
LandOfFree
Universal lighting network methods and systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal lighting network methods and systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal lighting network methods and systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3017286