Universal handling container

Special receptacle or package – Holder for a removable electrical component – Including electrical field – magnetic field – or static...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C206S723000, C206S594000

Reexamination Certificate

active

06401930

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The invention relates to handling containers for use in an assembly or manufacturing environment. The invention more particularly relates to a universal handling container that temporarily protects an ESD (electrostatic discharge) sensitive item such as an electrical or electro-optical module.
2. Description of Related Art
ESD-sensitive items such as electrical and electro-optical modules present difficult challenges to a packaging engineer. Such modules include one or more circuit boards with various electrical, optical, and/or electro-optical components. Such modules are quite fragile and should be adequately protected during shipping, servicing, or at an other time when the module is not located within a permanent or other protective container. The types of protection required by such modules include physical protection and ESD (electrostatic discharge) protection.
Many manufacturers of such modules utilize a permanent container to house sensitive boards having electrical, optical, and/or electro-optical components. For example, a common solution is to use a sheet metal housing to fully enclose the board(s).
While a sheet metal container does provide a measure of physical and electrostatic discharge (ESD) protection, such permanent containers create their own problems. Chief among these problems is heat dissipation. By enclosing the board(s) within a sheet metal container, thermal mass increases and, perhaps more significantly, airflow is restricted. Thus, the heat generated by the components is much harder to dissipate and may contribute to component failure, degradation and shortened life-span. Openings, holes and fans are often added to cool the components but such techniques are often inadequate.
Another problem of permanent containers is that they consume valuable space. A common goal in the electronics and opto-electronics industries is to produce modules of minimum size. The permanent container solution consumes space and defeats this goal. Moreover, the permanent container adds a level of complexity and cost to a module which can be a serious disadvantage in an industry having narrow profit margins.
Another common solution is to dispense with a permanent housing altogether. This creates shipping and temporary storage problems for the unprotected module. As noted above, the module is subject to physical damage as well as ESD damage from improper handling.
Various temporary module packing designs are commercially available to solve these problems. A typical design is a plastic clamshell enclosure in which two plastic panels with a common hinge may be closed in a clamshell fashion to house a module. The plastic panels usually have an cavity that conforms to the exterior dimensions of the module being housed. Such clamshell enclosures are quite flimsy and fail to adequately protect the module being housed. To provide the necessary physical protection such clamshell enclosures are themselves enclosed in other protective packaging materials particularly during shipping. This adds bulk, expense and may contribute to ESD problems particularly if electrically insulative packaging materials are used.
Suspension packaging is another conventional packing design widely used in the industry. Such suspension packages include two frames each of which holds a sheet of resilient material such as thin plastic. The module is put between the two frames which are then brought together thereby trapping the module between the resilient sheets. The space between the module and external box housing the frames provides a measure of physical protection but this measure may not adequate to protect the module. In addition, the plastic sheets and paper materials used are typically insulative and create ESD problems which can damage the components of the module.
Furthermore, suspension packaging is cumbersome and bulky and is not likely to be utilized by a technician or assembler seeking a temporary home for the module. For example, such suspension packages are typically used only for shipping and are thrown away after shipping due to their bulk and not available for a temporary housing solution.
During manufacture and assembly of ESD-sensitive modules the temporary housing issue is acute. Regardless of whether a permanent container will be used or not, during the manufacture and assembly the module is often transported between different locations of the manufacturing floor or building(s). Even in a tightly controlled environment in which, for example, assemblers wear ESD preventative clothing and devices and the floor is embedded with a conductive wires, ESD can still damage modules. The shipping solutions described above are intended for long-distance shipping and require many steps to fully package the ESD-sensitive item. As such, conventional shipping solutions are not appropriate for a manufacturing environment in which rapid and efficient access to the module is important.
Therefore, there is a need for a housing container that solves the above-identified and other problems in the industry.
SUMMARY OF THE INVENTION
A universal handling container is disclosed that provides a temporary housing for ESD-sensitive items such as electrical and electrooptic components and modules.
The inventive universal handling container for housing an ESD-sensitive component, includes: a base section including a bottom, a front, and a back; a lid section having a shape substantially conforming to a shape of the bottom of the base section; a hinge section joining the back of the base section and the lid section; wherein an interior of the said base section has a shape divided into a middle portion and a pair of side portions on opposite sides of the middle portion; panels lining an interior face of the lid section and interior faces of the bottom, front and back of the base section; blocks substantially filling the two side portions of said base section; a pair of recesses provided in top portions of said blocks; and a pair of projections affixed to the interior face of the lid section and opposite the pair of recesses; the pair of recesses and said pair of projections having a shape and size so as to form a friction fit therebetween; the base section, the lid section, and the hinge section being made of a conductive material; and the panels, the blocks, and the projections being made of a conductive, resilient material.
The lid section and the bottom of the base portion may both have an octagonal shape such that the interior of the base section has an decahedral shape, the middle portion has a rectangular parallel piped shape and the two side sections each have a hexahedral shape.
The front and the back of the base section may each have a rectangular main surface and a pair of wings disposed on opposite ends of the rectangular main surface, the wings being bent inwardly to conform to the octagonal shape of said lid section and the bottom of said base section.
In addition, a document holder having at least a top surface made of a transparent material may be affixed to an outer surface of the universal handling container.
Also, a conductive adapter may be included having a size and shape to adapt interior dimensions of the universal handling container to exterior dimensions of the ESD-sensitive component.
Conductive materials such are preferably used to construct the container in order to have the desired Faraday cage effect. Specifically, the outer shell of the container is preferably made of a structural conductive material such as conductive corrugated plastic. This shell is lined with a conductive resilient material to cushion the ESD-sensitive item and to increase the effectiveness of the Faraday cage. For example, the panels, blocks, and projections may be made from a closed-cell conductive foam, a conductive cross-linked polyethylene foam or a conductive cross-linked VA copolymer foam.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detail

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Universal handling container does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Universal handling container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal handling container will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2898473

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.