Electricity: motive power systems – Generator-fed motor systems having generator control – Generator field circuit control
Reexamination Certificate
2000-04-03
2002-05-21
Ro, Bentsu (Department: 2837)
Electricity: motive power systems
Generator-fed motor systems having generator control
Generator field circuit control
C322S032000, C322S072000
Reexamination Certificate
active
06392371
ABSTRACT:
FIELD
This patent specification is in the field of electric machines such as power generators and pertains more specifically to an ability to vary one or both of the mechanical rotation speed of the prime mover and the output frequency of the generator substantially independently of each other, and also to eliminating the need for a torque gear box when using an arrangement in which the mechanical rotation speed and the output frequency are difficult to match, such as when a high RPM prime mover drives a lower output frequency generator.
BACKGROUND
Electric generators have been used for over a century, the principle dating back to Faraday and Fouquet and simply stated as follows: If a wire in a magnetic field is moved relative to the field by a mechanical force (greater than the electromagnetic force), a current in the wire or a voltage across the wire is generated and thus mechanical motion is converted to electric power. To satisfy the various requirements of energy generation standards, different forms of electric generator systems have been devised. All can be said to obey the electromotive principle of Faraday, as later more precisely described by Lenz.
The prevalent type of power generators are AC generators, although DC generators are used in certain applications. There are many configurations of AC generators, the most common being a generator in which the coils that supply the electrical power are stationary and the magnetic field that induces the current therein rotates. The main components of a typical synchronous AC generator are the stator and the rotor. The rotor typically has an even number of poles of alternating polarity. Each pole has a field coil, and the field coils are electrically connected to form a field winding. An exciter feeds DC current into the field winding, and the resulting mmf (magnetomotive force) creates the desired rotating magnetic field. The exciter can be a DC generator driven by the same prime mover (e.g., a hydroturbine, or a steam or gas turbine) as the rotor. The DC current is fed into the rotor field winding via brushes and slip-rings. In a “brushless” exciter, the DC current can be obtained from a separate AC winding placed on a separate rotor connected directly to the main rotor, through a rectifier circuit placed on the rotor and rectifying this AC current.
The stator or armature winding, in which the desired emf (electromotive force) is generated, is typically placed in regularly arranged slots on the stator's inside or outside surface. The stator winding comprises coils arranged such that the coil sides are one pole division apart. For example, for use with a four-pole rotor, they are 90° apart. As the prime mover rotates the rotor, the magnetic flux the field winding on the rotor generates sweeps the armature winding, inducing therein the desired emf. With a four-pole rotor, a full cycle of emf is obtained when the rotor turns through 180 mechanical degrees, which corresponds to 360 electrical degrees. In the more general case of a p-pole generator (where p is a positive integer), rotated mechanically at n RPM, the electrical frequency in Hz is related to the number of poles p and the mechanical rotation speed in RPM as f=pn/120. Conversely, n=120 f/p.
A single phase AC generator has a single armature winding on the stator, but this typically is used only for low power applications because of factors such as mechanical vibration and power pulsations. The most common arrangement for higher power is the three-phase system that produces three voltages, at three terminals that have equal rms values (relative to a fourth, neutral terminal) but phases that are 120° apart.
A synchronous generator typically feeds a power grid (often through a step-up transformer) but can be connected to the grid only when several conditions are satisfied: (a) the frequency of the grid and the generator emf are the same (e.g., for a 60 Hz grid, the generator's rotor turns at 3600 RPM for a 2-pole rotor, 1800 RPM for a 4-pole rotor, etc.); (b) the phase sequences of the generator and grid are the same; (c) the generator's emf is the same as the grid voltage; and (d) there is no phase difference between the generator's emf and the grid voltage. Only when all four conditions are satisfied can the generator be safely connected, or can stay connected, to the grid to feed power thereto.
Because an AC synchronized generator typically links its mechanical rotating speed to line frequency, so that a 2-pole 60 Hz generator would rotate at 3600 RPM and a 2-pole 50 Hz generator at 3000 RPM, it can be difficult to achieve efficient operation of the prime mover, or to change from one output frequency to another, or to operate the prime mover in a way that effectively and efficiently respond to load changes. For example, with the advent of prime mover improvements certain engines can produce very high horsepower if allowed to operate at very high RPM. This can be incompatible with the desired output electrical frequency, and can mean reducing the engine weight and improving its efficiency but having to add on a heavy, torque gear box, which would decrease the overall efficiency and increase maintenance and cost.
Typical known generators are discussed in O. I. Elgerd, et al.,
Electric Power Engineering
, 2
nd
Ed., Chapman & Hall, Int'l Thomson Publishing 1998, which is hereby incorporated by reference, and is referred to below by its title.
SUMMARY
A preferred embodiment described below overcomes these and other disadvantages of the known prior art by providing the ability to drive the generator at a convenient mechanical speed while producing another output frequency as desired. Stated differently, the magnetic field the rotor produces can rotate at a speed substantially independent of the rotor's mechanical rotational speed. As a result, the prime mover can rotate the rotor at a speed substantially different from the speed that otherwise would be dictated by the desired output electrical frequency—for example, a high speed turbine can drive the rotor shaft at its own speed and still feed a 60 Hz or a 50 Hz power grid. As another example, the same generator can be efficiently used to feed either a 60 Hz or a 50 Hz power grid, the difference being only in settings of the electronic controls that establish and maintain the rotational speed of the magnetic field the rotor produces, without a need to change the rotor's mechanical rotation speed. As yet another example, a generator that does not feed a power line of a fixed frequency can be efficiently operated at any one of a number of output frequencies without needing to change the prime mover RPM. Moreover, the load conditions can be accounted for by changing the prime mover's speed to match the current load while keeping the electrical frequency constant or changing in a different way. In this manner, the prime mover can be operated at speeds that are efficient for the current load, but the generator's output frequency can stay the same, or can change in a desired way.
As described in the parent patent, such advantages can be achieved by primarily mechanical or primarily electronic controls. In a mainly mechanical implementation, the differential speed required to drive the brushes supplying power to the field winding is determined after the drive speed and desired output frequency are selected. A mainly electronic implementation allows more design freedom, and computer-age electronics and principles enable auto-synchronization for preferable results. Eliminating the transient stabilization cage, used with current synchronized generators, is an important developmental step. Since the stabilization cage is designed for an induction motor rotor system, a slip frequency between the field winding and armature produces a strong back emf if the rotor is running at off-synchronization speed; this, in turn, produces a bucking torque against the non-synchronized motion.
One objective of the systems and methods disclosed herein is to provide an electronic commutating
Cheng Dah Yu
Helgesson Alan L.
Cheng Power Systems, Inc.
Cooper & Dunham LLP
Ro Bentsu
LandOfFree
Universal frequency electrical generator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal frequency electrical generator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal frequency electrical generator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2912421