Music – Instruments – Electrical musical tone generation
Reexamination Certificate
2001-11-27
2004-02-03
Donels, Jeffrey (Department: 2837)
Music
Instruments
Electrical musical tone generation
C084S645000, C369S004000, C370S420000, C381S118000
Reexamination Certificate
active
06686530
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention pertains to systems for enabling the communication of digital media signals and data between a media source device, such as a musical instrument, and electronic components needed to control and re-produce sounds generated by that source device. More specifically, this invention relates to a system and method that facilitates the interconnection of one or more diverse musical instruments and related audio components on a universal network for purposes of communication of audio signals and signals to identify and control the devices.
The generation, transmission, amplification and control of audio and other media signals and devices involve diverse yet interrelated technologies that are changing rapidly. The development and implementation of high bandwidth digital communication technologies and distribution systems is significantly affecting all media industries, from book publishing to television/video broadcasting. Products, systems, and services that affect the sense of sight or sound are converging in the use of common technologies and distribution pipelines. This has a profound effect, not only on the nature of the products that are produced, but on the sales channels and the methods of producing content for those products.
Current examples of the convergence of audio and digital technologies are the arrival and consumer acceptance of the MPEG-3 digital music format, the inexpensive recordable CD (e.g., the “MiniDisc”), and the high bandwidth Internet. However, the markets for technology-driven products are not served by implementation of multiple technical standards. Typically, a new technology begins in its early phase with multiple standards, which in many cases are vigorously debated and disputed among various advocates for the different standards. In most technology-driven industries that prosper, a single standard historically is universally adopted by members of that industry.
Similarly, there is a need for a universally accepted standard for digital communication of audio and video content. Because of the overwhelming acceptance of the Internet and its TCP/IP protocol, coupled with a substantial pre-existing infrastructure of network hardware, software, and know-how, a universal standard for digital audio/video communication and control should revolve around this well-known TCP/IP and Internet technology.
The weakness of the existing audio hardware market is in its application of digital electronic technologies. Today's musicians can record and process multiple-tracks of high quality sound on their computers but are forced to plug into boxes with 1950's era analog circuits. For example, the original challenge in the guitar musical instrument industry was to make the guitar louder. The circuits of the day distorted the sound of the instrument, but did accomplish their task. With time, these distortions became desirable tones, and became the basis of competition.
Guitar players and other musicians are very interested in sound modification. Digital technology allows musicians to create an infinite variety of sound modifications and enhancements. Musicians in small clubs typically have a veritable arsenal of pedal boxes, reverb effects, wires, guitars and the like. They generally have a rack of effects boxes and an antiquated amplifier positioned somewhere where the sound distribution is generally not optimal because the amplifier is essentially a point source. Because of this lack of accurate sound placement, the sound technician is constantly struggling to integrate the guitar player into the overall sound spectrum, so as to please the rest of the band as well as the audience who would love to hear the entire ensemble. Current solutions for this issue include positioning a microphone in front of a speaker and then mixing the audio from the microphone with the house sound.
Technology has made some progress along a digital audio path. For example, there are prior art guitar processors and digital amplifiers that use digital signal processing (DSP) to allow a single guitar to emulate a variety of different guitar sounds, amplifier types, and other sound modifications such as reverb and delay. To achieve the same variety of sounds and variations without using DSP technology, a musician would have to buy several guitars, several different amplifiers, and at least one, if not more than one, accessory electronic box.
All existing instruments, if they use a transducer of any kind, output the sound information as an analog signal. This analog signal varies in output level and impedance, is subject to capacitance and other environmental distortions, and can be subject to ground loops and other kinds of electronic noise. After being degraded in such fashion by the environment, the analog signal is often digitized at some point, with the digitized signal including the noise component. Although existing digital audio technologies show promise, it is clear that the audio equipment and musical instrument industries would benefit from a system and method where all audio signals are digital at inception or at the earliest possible point in the signal chain.
At present, there are multiple digital interconnection specifications, including AES/EBU, S/PDIF, the ADAT “Light Pipe” and IEEE 1394 “Firewire”. However, none of these standards or specifications is physically appropriate for the unique requirements of live music performance. In addition, clocking, synchronization, and jitter/latency management are large problems with many of these existing digital options.
Different segments of the music market have experimented in digital audio. Some segments have completely embraced it, but there is no appropriate scalable standard. Clearly, digital components exist, but these are designed to function as stand alone digital devices. Correspondingly, many manufacturers have chosen to make their small portion of the product world digital but rely mainly on traditional analog I/O to connect to the rest of the world. This may solve the local problem for the specific product in question, but does little to resolve the greater system-oriented issues that arise as the number of interconnected devices grows. In addition, the small sound degradation caused by an analog-to-digital and digital-to-analog transformation in each “box” combines to produce non-optimal sound quality. Finally, the cost, power and size inefficiency related to having each component in a chain converting back and forth to digital begs for a universal, end-to-end digital solution.
Another basic yet important part of the problem is that live musicians need a single cable that is long, locally repairable, and simple to install and use. In addition, it is highly desirable to support multiple audio channels on a single cable, as setups often scale out of control with current multiple cable solutions. Providing low current, DC power through the cable for the active circuits used in digital instruments would be preferable to the use of batteries which many conventional instruments depend on.
Based on the technology trends and patterns that have already been established, a digital guitar will emerge with the transducers (pick-ups) feeding a high bandwidth digital signal. This advance will remove many detrimental aspects of the analog technology it will replace, including noise, inconsistent tonal response from time to time, and loss of fidelity with a need for subsequent signal processing. The introduction of digital technology from the instrument will allow the entire signal path and the equipment associated with the signal path to be digital. Unfortunately, there is no system available to interconnect multiple musical instruments and associated audio components so that they can communicate with each other and be controlled entirely in the digital domain, using a universal interface and communications protocol.
In summary, despite dramatic advances in technology, real-time high-fidelity digital audio has yet to permeate both production and live performance. Increasing demand has motiva
Amit Shri
Flaks Jason S.
Frantz Richard A.
Juszkiewicz Henry E.
Sherman Thomas L.
Beavers Lucian Wayne
Donels Jeffrey
Gibson Guitar Corp.
Patterson Mark J.
Waddey & Patterson
LandOfFree
Universal digital media communications and control system... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal digital media communications and control system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal digital media communications and control system... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3277805