Electrical connectors – With coupling movement-actuating means or retaining means in... – Retaining means
Reexamination Certificate
1999-03-31
2001-03-20
Sircus, Brian (Department: 2839)
Electrical connectors
With coupling movement-actuating means or retaining means in...
Retaining means
C439S352000
Reexamination Certificate
active
06203355
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to electrical connectors and, more particularly, to electrical connectors utilized in electric vehicles for supplying current to recharge the vehicle batteries.
DESCRIPTION OF THE RELATED ART
With the proliferation and increase emphasis on development of electrical powered vehicles, the need for electrical connectors for transmitting high and low current to the batteries exist. Connectors used in the automotive field and elsewhere, and particularly in electrical vehicles, must be capable of withstanding heavy current loads. In electrical vehicles, connectors are used to connect the battery pack of the electric vehicle to high or low voltage distribution boxes and to connect the high or low voltage distribution boxes to the charging port and to the motor of the vehicle.
The environment in which these connectors are used places a great deal of both mechanical and thermal stress on the connectors. The mating members of these connectors must be securely connected so that the connector does not fail during normal usage. Additionally, the connectors must be relatively easy to mate, that is, one member of the connector be readily insertable into its mating member. It is also desirable for the connector to handle both AC as well as DC current so that one connector may be used for both power sources. It is also desirable that the connector house control circuits for prohibiting arcing between the positive and negative contacts within the connector. Further, the connector should prohibit unauthorized connector separation during charging of the vehicle batteries. Furthermore, the connector should prohibit the vehicle from moving during the charging of the batteries.
Additionally, unlike a typical automotive application, where the vehicle chassis provides the return path, in electric vehicles, high voltage negative contacts must be isolated from the vehicle chassis. Further, it is desirous to have both the positive and negative voltage contacts in the same connector body for space considerations.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a connector capable of conducting both high and low voltages from a DC or AC power source. It is also an object to have a connector which is provided with both AC and DC contacts so that, depending upon the power source, the contacts can accommodate the power source. Further, the present invention provides a mechanism which prohibits unauthorized separation of the connectors during charging of the vehicle batteries. Another object is that the present invention provides a connector which terminates power to the connector prior to separation of the male and female members to prohibit arcing. The present invention also, during charging, cuts off the power in the vehicle so that it cannot be driven away during charging. Further, the present invention provides handles on the connectors to enable easy manipulation of the connectors to couple the male and female connectors together.
Other features of the present invention are disclosed and claimed in the following co-pending patent applications which were filed the same day as the present patent application and are hereby incorporated by reference.
In a first aspect of the invention, an electrical connector assembly comprises a male connector having a housing with a first pair and second pair of electrical contacts in the housing. A female connector has a housing with a first pair of electrical contacts to electrically couple with the male connector first pair of electrical contacts. The female connector also includes a second pair of electrical contacts to electrically couple with the male connector second pair of electrical contacts. One of the pair of electrical contacts is for conducting DC current and the other of the pairs of electrical contacts is for conducting AC current.
The connector assembly includes a common ground for both pairs of electrical contacts. The male connector has an elongated housing with a first and second handle. Also, a latching mechanism is coupled with the male housing to secure the male and female housings together. Further, the male housing is capable of coupling with a plurality of members to receive a plurality of different sized power sources.
The female housing has a first member with a cup portion which defines a cavity to receive the male connector. The cup has a base with a plurality of apertures to receive the pairs of electrical contacts. A collar portion extends from the cup portion to receive electrical contacts. A second member couples with the collar member of the first member. The second member has a plurality of electrical contact holding members to receive the electrical contacts and align the electrical contacts to position the contacts into the apertures. The female housing includes a third member which is coupled with the first member. The third member has a ring member with a plurality of apertures enabling securement with the vehicle body. A door is coupled with the third member to cover the ring opening. A cap is coupled with the female housing when the male and female housings are disconnected. The cup includes a rotatable member to secure the cap with the female housing. The rotatable member is biased to return to its original position upon removal from the female housing.
In a second aspect of the invention, the electrical connector assembly comprises a male connector having a housing and, electrical contacts in the housing for conducting AC or DC current. The male connector has a housing to couple with the female connector. Electrical contacts are in the female housing to couple with the electrical contacts and the male connector. A mechanism to eliminate current arcing during disconnection of the male and female connectors is coupled with at least one of the male or female connectors. The mechanism includes a switch coupled with a power source for the connector assembly. The switch terminates current flow prior to disconnection of the male and female connectors. The mechanism has a release lever coupled with the switch to activate the switch. Also, the release lever is coupled with a latch which releasably locks the male and female connectors in a coupled position.
In another aspect of the invention, an electrical connector comprises a male connector with a housing having electrical contacts in the housing to conduct AC or DC current. A female connector has a housing to couple with the male connector housing. Electrical contacts are in the female housing to couple with the electrical contacts in the male housing. The male and female connectors are coupled between a power source and a rechargeable power user. Also included is a mechanism to terminate power to the rechargeable power user prohibiting use of the rechargeable power user during charging. The rechargeable power user is an electric vehicle including electric batteries. The mechanism has a switch to cut off power in the vehicle so that the vehicle is disabled during charging. The mechanism is coupled with the connector on the rechargeable power user. The female housing has a cover to cover the electrical contacts in a disconnected position. The cover activates the mechanism upon opening of the cover to enable connection with the male connector.
In another embodiment of the invention, the electrical connector assembly comprises a male connector with a housing having electrical contacts in the housing to conduct AC or DC current. A female conductor has a housing to couple with the male housing. Electrical contacts are in the female housing to couple with the male electrical contacts. A latch mechanism releasably couples the male and female connectors together. A lock mechanism is coupled with the latch mechanism to prohibit unauthorized disconnection of the male and female connectors in a coupled position. The latch mechanism has a trigger pivoted with a catch. The trigger releases the catch which holds the male and female connectors together. The trigger and catch are housed in the male conn
Lescamela David A.
Neblett Larry L.
Rohr Guenter
Zielinski Thomas E.
DaimlerChrysler Corporation
Fuller III Roland A.
Prasad Chandrika
Sircus Brian
LandOfFree
Universal charge port connector for electric vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal charge port connector for electric vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal charge port connector for electric vehicles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2473681