Unit dosage forms for the treatment of herpes simplex

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S401000, C424S427000, C424S434000, C424S468000, C424S472000, C424S473000, C514S944000

Reexamination Certificate

active

06231889

ABSTRACT:

BACKGROUND OF THE INVENTION 1. FIELD OF THE INVENTION
This invention is in the field of pharmacology, and relates specifically to the pharmacological treatment of conditions associated with herpes simplex virus infections.
2. Description of the Prior Art
Herpes Simplex—the Virus
No human virus is considered normal flora; although some viruses may be more or less symptomatic, unlike bacteria none can be considered non-pathogenic. And because the viral life cycle is played out within a host cell, the membrane and molecular function of the target eukaryocyte and the biological life cycle of the invasive virion are inextricably entwined.
Viruses may be grouped in a variety of ways; perhaps most simply by considering five elements:
1) Method of entry into the host.
2) Extent of spread in the host.
3) Mode of spread within the host.
4) The host tissue targeted.
5) The fate of the virus after host recovery.
According to this admittedly simple list of characteristics, herpes simplex virus (HSV), Herpesviridae, Simplexvirus, enters the host by direct contact, is spread to a target tissue only, spreads within the host via neuronal axonal flow, targets the dorsal root ganglia and after recovery of the host from an acute infection, remains latent in the targeted tissue.
The HSV virion is a large (100 to 150 m&ggr;), enveloped virus with an icosahedral capsid. It has double strand DNA with a genome that encodes at least 70 polypeptides—this large amount of regulatory information permits the virus to control its own gene expression and elegantly to modify multiple complex events within the infected cell.
The invading virion binds to host cell receptors. A primary binding site is host cell surface heparan sulfate glycosaminoglycan, which binds with the V3 loop of the viral envelope glycoprotein (gp 120). Another primary binding site may be chondroitin sulfate. Mediated by viral glycoprotein gB and following nonspecific primary binding, more specific binding occurs to the gC4 and gD4 viral surface glycoproteins. The virion envelope fuses with the plasma membrane of the host cell. The capsid is uncoated, the virus invasively inserts surface glycoprotein gB through the host cell plasma membrane and enters the host nucleus where viral DNA is transcribed and processed into mature mRNA; at the same time, host cell mRNA synthesis is inhibited. Invading HSV also inhibits host cell DNA synthesis while viral DNA replicates within the host nucleus. The viral DNA combines with newly formed HSV capsid proteins translated in the cytoplasm, and assembles into progeny virion particles within the nuclear membrane. Concurrent expression of glycoproteins in the host plasma envelope stimulates neighboring cells to clump together. Following cell-to-cell contact by binding and fusion of their respective plasma envelopes, progeny particles invade clumped, neighboring host cells directly or by spread following lysis of previously invaded tissue cells or phagocytes and the process repeats itself.
Viral invasion elicits a phagocytic response coupled with typical phagocytic immune activities—the release of soluble immune mediators (i.e., cytokines) and high respiratory burst responses by activated phagocytes. These immune responses are themselves detrimental to the host; not only because of local tissue necrosis from high environmental levels of free radical release, but also because of the development of mutant, potentially resistant viral strains secondary to toxic local levels of activated oxygen and hydroxyl species.
Herpes Simplex—Clinical Expression
The massive disruption by HSV of host cell molecular functions and of host cellular structure is manifested clinically as host cellular death, resulting in shallow, painful vesicular ectodermal lesions or by hemorrhagic encephalitic necrosis of the brain. Target tissues for HSV are the skin or mucous membranes usually derived from embryonic ectoderm: mouth, skin, vagina, conjunctiva, cornea, etc. The virus enters the host cell by direct mucosal contact or by direct contact of abraded skin. In the skin the virus replicates in epithelial cells and then enters local sensory neurons. The virus travels to the dorsal root ganglia via retrograde axonal flow where it establishes permanent residency. There it establishes latency a state in which the viral lytic genes are silenced and only the latency locus is transcriptionally active. Although latent most of the time, it reactivates intermittently, travels down the sensory nerve and causes vesicular eruptions at or near the site of initial invasion. Alternatively the virus may invade the CNS and cause encephalitis.
The rate of seropositivity to HSV varies widely from country to country:
from relatively low in Japan where Herpes simplex Type 1 (HSV-1) seroprevalence for men and women has decreased from 75.3 and 80.6% in 1973 to 54.4 and 59.6%, respectively in 1993 and where Herpes simplex Type 2 (HSV-2) seroprevalence has decreased from 10.2 and 9.9% in 1973 to 1.8 and 1.2%, respectively in 1993, to quite high in Africa where all adult study groups have a high HSV-1 seroprevalence of >80%.
HSV infects more than 50% of the adult population, but some infections may be unrecognized. About half of these develop clinical manifestations of the disease. Its most significant manifestations are keratitis, genital lesions and labial vesicular lesions (“cold sores”).
HSV-1 typically causes herpes keratitis (cornea). This disease is identified by a typically bizarre dendritic-patterned corneal ulcer that tends to be recurrent and very often leads to scarring with a reduction of vision, sometimes to the level of legal blindness. HSV-1 also causes herpes labialis, peri-orbital, peri-oral, peri-nasal skin eruptions and, in older patients, the virus has been associated with herpes zoster (“shingles”) infection of the upper trunk.
HSV-2 causes the most prevalent sexually transmitted disease in the United States and visits to physicians for genital herpes simplex virus infection continue to increase. As many as 30 million Americans are infected with HSV-2. About half of these carriers are symptomatic. The clinical manifestations range from mild genital inflammation to severe, very painful, vesicular lesions and ulceration. Systemic involvement in the most severe cases may include hepatitis. Brain damage and death often are the result of HSV-2 acquired by a newborn infant as it passes through an infected birth canal.
Once the herpes virus (of either kind) has infected the human body, the virus is permanently present. This is particularly true for viral infection of the nerve cells of the dorsal root ganglia that are out of range of the immune system. Less commonly, the epithelial basement membrane may house the latent virus. The virus becomes periodically active when the immune system is depressed or when oxidative stress is increased, i.e., during illness, after exposure to high intensity ultraviolet light, following local tissue trauma, etc.
Although HSV-1 principally causes corneal infections or “cold sores” and HSV-2 most often causes genital herpes, either type can infect the cornea, the mouth and/or the genitals. Similarly although most herpetic ocular infections in adults are caused by HSV-1, other more severe and prolonged cases in adults have been shown to be caused by HSV-2.
Herpes Simplex—Current Clinical Treatment
Present treatment rationales are focused upon preventing the fusion of the virion envelope with the host cell plasma membrane by negatively influencing host cell membrane receptors or by interfering with the glycosylation of viral protein required for fusion, and by reducing viral replication within the host cell nucleus. More recently some attention has been drawn to the relationship between local levels of toxic free radicals and antioxidants in the host target cell environment and apparent target cell resistance to infection following viral reactivation.
A. Ophthalmic Preparations:
1. &agr;-&agr;-&agr;-trifluorothymidine—(Viroptic® 1% solution)—useful in treating HSV-1 and HSV-2 keratoconjunctivitis, i.e., HSV lesion

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Unit dosage forms for the treatment of herpes simplex does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Unit dosage forms for the treatment of herpes simplex, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unit dosage forms for the treatment of herpes simplex will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2502882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.