Uniform distribution quenching of formed glass sheets

Glass manufacturing – Processes – Glass preform treating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S025100, C065S025200, C065S104000, C065S115000, C065S182100, C065S182200, C065S095000, C065S348000, C428S426000, C428S543000, C072S176000, C072S177000, C072S333000, C072S370270, C072S379200

Reexamination Certificate

active

06295842

ABSTRACT:

TECHNICAL FIELD
This invention relates to a glass sheet quench unit, a glass sheet quench station including a pair of quench units, a method for quenching formed glass sheets, the resultant formed and quenched glass sheet, and a method for making a quench unit.
BACKGROUND ART
Quenching of formed glass sheets to provide annealing, heat strengthening and tempering has not previously provided uniform distribution of the quenching so as to provide a uniformly cooled glass sheet with consequent uniformity of the glass mechanical stresses resulting from such cooling. This is because formed glass sheets have oppositely facing curved surfaces over which conventional quench units do not provide uniform distribution of quench gas, unlike flat glass sheets over whose oppositely facing flat surfaces the quench gas has been more evenly distributed.
DISCLOSURE OF INVENTION
One object of the present invention is to provide an improved glass sheet quench unit for quenching formed glass sheets.
In carrying out the above object, a glass sheet quench unit constructed in accordance with the invention includes a plenum housing defining a quench plenum to which pressurized gas is supplied. A plurality of nozzle feed rows of the quench unit extend from the plenum housing in a spaced relationship from each other. Each nozzle feed row has a pair of generally planar sides. The planar sides of the nozzle feed rows have inner extremities mounted by the plenum housing and also have distal extremities with curved shapes along a longitudinal axis. Each nozzle feed row has an elongated nozzle cap that is curved in a direction along the longitudinal axis and is secured to the curved distal extremities of its planar sides. The curved nozzle cap of each nozzle feed row has a curved cross section along its length perpendicular to the longitudinal axis and has nozzle openings for providing quench gas jets that define a uniformly repeating gas jet impingement pattern providing uniformly repeating quench cells distributed over a formed gas sheet to be quenched to provide uniform quenching.
The glass sheet quench unit preferably has its nozzle openings providing gas jets that define an equilateral triangular gas jet impingement pattern providing equilateral hexagonal quench cells.
In the preferred construction of the glass sheet quench unit, the plenum housing has a V shape that is secured to the inner extremities of the planar sides of the nozzle feed rows. The nozzle feed rows in one embodiment have uniform widths and uniform spacings from each other, and in another embodiment, the nozzle feed rows have uniform widths and varying spacings from each other. The nozzle feed rows also can have varying heights from one row to the next row to provide quenching of glass sheets that are formed with curvature in transverse directions.
In the preferred construction, the curved cross section of the nozzle cap of each nozzle feed row has a semicircular shape and projections that extend from its semicircular shape and that are respectively secured to the distal extremities of the planar sides of the nozzle feed row. The projections of the curved nozzle caps have inner surfaces that oppose each other and are respectively secured to the distal extremities of the planar sides of the nozzle feed rows. Each nozzle feed row includes connections having alignment fasteners that secure the projections of the nozzle feed caps to the distal extremities of the planar sides of the nozzle feed rows. The connections that secure the projections of the curved nozzle caps to the distal extremities of the planar sides of the nozzle feed rows also include an adhesive.
Another object of the present invention is to provide an improved glass sheet quench station including a pair of quench units that oppose each other to quench formed glass sheets.
In carrying out the immediately preceding object, each quench unit of the quench station includes a plenum housing defining a quench plenum to which pressurized gas is supplied. Each quench unit also includes a plurality of nozzle feed rows extending from the plenum housing in a spaced relationship from each other. Each nozzle feed row has a pair of generally planar sides. The planar sides of the nozzle feed rows have inner extremities mounted by the plenum housing and also have distal extremities with curved shapes along a longitudinal axis. Each nozzle feed row has an elongated nozzle cap that is curved in a direction along the longitudinal axis and is secured to the curved distal extremities of its planar sides. The nozzle cap of each nozzle feed row has a curved cross section perpendicular to the longitudinal axis and nozzle openings for providing quench gas jets that define an equilateral triangular gas jet impingement pattern providing uniformly sized equilateral hexagonal quench cells, distributed over a formed glass sheet to be quenched to provide uniform quenching. Furthermore, the equilateral triangular gas jet impingement pattern and the hexagonal quench cells provided by both quench units are aligned with each other.
Another object of the present invention is to provide an improved method for quenching formed glass sheets.
In carrying out the immediately preceding object, the method for quenching formed glass sheets is performed by positioning a glass sheet, that has been formed from a flat shape to a curved shape along an axis, between a pair of gas quench units of a quench station with the gas quench units curved along said axis, and distributing gas jets from the pair of quench units for impingement with the formed glass sheet in a uniformly repeating pattern providing uniformly repeating quench cells distributed both along and perpendicular to said axis over the formed glass sheet to provide uniform quenching.
The method is preferably performed by distributing the gas jets over the formed glass sheet in an equilateral triangular pattern that provides uniformly sized equilateral hexagonal quench cells.
In one practice of the formed glass sheet quenching method, the gas jets are distributed from quench units having nozzle feed rows spaced uniformly from each other, while another practice of the formed glass sheet quenching method has the gas jets distributed from quench units having nozzle feed rows spaced at varying distances from each other.
The formed glass sheet quenching method as disclosed has the pair of quench units of the quench station positioned in upper and lower locations relative to each other with the formed glass sheet located vertically therebetween for the quenching in the equilateral triangular gas jet impingement patterns providing the uniformly sized hexagonal quench cells. The equilateral triangular gas jet impingement patterns and the uniformly sized equilateral hexagonal quench cells provided by both quench units are preferably aligned with each other.
The formed glass sheet quench method can be performed on a formed glass sheet that is curved in transverse directions and that is positioned between the pair of quench units with the pair of quench units distributing gas jets for impingement in the equilateral triangular patterns providing the uniformly sized equilateral hexagonal quench cells distributed over the transversely curved shape of the formed glass sheet.
In performing the formed glass sheet quench method, the quench gas jets are preferably distributed from the pair of quench units through curved nozzle caps of elongated shapes having curved cross sections and curved shapes along their lengths.
Another object of the present invention is to provide an improved glass sheet that has been formed from a flat shape to a curved shape along an axis and then quenched.
In carrying out the above object, a formed and quenched glass sheet according to the invention has oppositely facing formed surfaces between which glass stresses are uniformly distributed both along and perpendicular to said axis by quenching the glass sheet with gas jets that define a uniformly repeating impingement pattern that provides uniformly repeating quench cells distributed both along and perpen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Uniform distribution quenching of formed glass sheets does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Uniform distribution quenching of formed glass sheets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uniform distribution quenching of formed glass sheets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2616685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.