Animal husbandry – Aquatic animal culturing – Fish culturing
Reexamination Certificate
2000-06-12
2002-06-25
Jordan, Charles T. (Department: 3643)
Animal husbandry
Aquatic animal culturing
Fish culturing
Reexamination Certificate
active
06408791
ABSTRACT:
BACKGROUND OF THE INVENTION
Aquatic life requires underwater structures in order to survive and thrive. Underwater structures provide the foundation for an aquatic ecosystem or aquatic food chain, including a place for vegetation and algae to attach as well as shelter for small crustaceans and aquatic insects. Underwater structures also fill other needs, such as providing spawning grounds, cover for fry, fingerlings, and small fish, as well as providing hiding places for larger fish to ambush an unwary passerby. These various needs require structure at varying depths. A structure that is confined to a single depth may not be able to fill all the needs of an aquatic ecosystem. Without proper underwater structures, the aquatic ecosystem may be missing parts of the food chain resulting in the body of water turning into a virtual desert in which aquatic life becomes scarce or non-existent. Overall, proper underwater structure is an oasis for aquatic life.
The problem of maintaining sufficient underwater structure to support an aquatic ecosystem is especially acute for man-made lakes and reservoirs. As man-made lakes age, the native timber and other inundated structures deteriorate causing a decrease over time in the capacity of the native timber and structures to support aquatic life. This problem is exacerbated by human-induced heavy silt and sludge flows covering the structure that does exist. Eventually, the structure becomes ineffective to support aquatic life which eventually results in a decrease of all aquatic life, including game fish.
A different problem that exists is the billions of used automobile and truck tires that litter the landscape and take up volume in innumerable land fills. These tires become a breeding ground for insects and vermin and have a negative impact on the quality of life in the area.
The present invention provides a solution to mitigate the negative impact of both the lack of underwater structures in bodies of water and the blight of discarded tires. The invention uses old tires or similar-shaped refuse, such as plastic bottle carriers, to form various underwater structures. The structures are preferably constructed of discarded tires connected tread-to-tread to form upright arrays of vertically-oriented tires. In another preferred embodiment, horizontally-oriented tires are spaced apart along PVC piping or along a flexible member to form an upright array. The PVC supported array is also suitable for laying on its side on the bottom of a body of water.
A tire, or other similar structure, typically has a cavity that is formed by the upper and lower sidewalls and the treadwall of the tire. A tire, or other similar structure, also has an aperture formed by the sidewalls of the tire. For a tire, or other structure, oriented vertically, i.e., in the same orientation as a tire would be if attached to the rim of a wheel on a car to transfer the rotational energy of the axle of the car to the road, the cavity is downwardly opening for the upper half of the tire or structure and upwardly opening for the lower half of the tire or structure. For a tire, or other structure, oriented horizontally, i.e., laying flat on the ground, the cavity of the tire, or other structure, is inwardly opening.
Each of these structures include a buoyant material and an anchor. The anchor acts to fix the structure to the bottom of a body of water, such as a lake bed. The buoyant material is dispersed within the structure so that the structure maintains a vertical, upright orientation to the lake bed and does not sink and lay flat on the bottom. The combination of anchor and buoyancy provides a structure that will not be subject to movement along the bottom of the body of water due to currents while maintaining a generally upright structure so that fish and other aquatic life can gain the benefits of the structure at whatever depth of water they choose to inhabit.
The structures can be of varying length, size, and shape, such as: a single tire; a linear array of tires connected together; a linear array of tires held together in a spaced-apart manner; a planar array of tires; a three or four sided pyramid; a cube; or virtually any other three-dimensional structure. Furthermore, the structure can incorporate other materials such as small trees or other natural vegetation as well as man-made material. The linear or planar array of tires can be constructed so that all of the tires are uniformly oriented, i.e., the aperture of the tires in the array all face the same direction. Conversely, the linear or planar array of tires can be constructed so that select tires are rotated ninety degrees so that the aperture of the rotated tires face in a direction normal to the direction of the non-rotated tires in the array.
The buoyant material is preferably a used plastic beverage container, such as a two-liter soda bottle, although other sizes can be used effectively. The buoyant material is preferably placed in the cavity of the tire formed by the two sidewalls and the tread. The buoyant material may be secured in the cavity ov the tire by any suitable means, such as tape, wire, or rope.
Two-liter soda bottles are manufactured to withstand internal pressurization from the soda and these bottles will tolerate some abuse without tearing or bursting thereby making them an ideal buoyant device. For the present invention, the soda bottle can preferably be charged with pressurized gas to prevent the soda bottle from collapsing due to the pressure of the water surrounding the bottle when the artificial underwater habitat is deployed at depth.
In order to charge the soda bottle, or other container, with pressurized gas, a hole is drilled in the center of the plastic cap to the soda bottle and a flexible circular disk gasket with an eccentric hole is inserted in the cap. The hole in the cap must not align with the hole in the gasket. The gasket is preferably cut from a discarded medium-weight inner tube, although any similar type of material that can function in a similar manner will suffice. The cap and gasket is screwed onto the container and a pressurized gas is admitted to the container via a nozzle through the hole in the cap. The gasket flexes to allow the pressurized gas to enter the container. When the nozzle is removed, the gasket flexes back to make contact with the inside surface of the cap. Since the hole in the cap and the hole in the gasket are not aligned, the pressure of the gas in the container maintains the gasket against the inside surface of the cap thereby sealing the pressurized gas in the container. Other means of providing buoyancy to the structure are also contemplated, such as styrofoam, bubble wrap, or air trapped within the cavity of the tire.
The anchor is preferably concrete, concrete block, or can be comprised of a discarded one-gallon plastic jar, such as the type manufactured as a bulk food container, filled with sand or concrete. The anchor is preferably deployed in the cavity of the tire but may be connected externally to the tire by a flexible member such as a wire, nylon, or hemp rope, chain, or plastic connector, or by a rigid member such as PVC pipe. Another preferred anchor is comprised of wire mesh and gravel. The tire is horizontally-oriented and the wire mesh is fitted within the tire so as to cover the aperture formed by the annulus of the lower sidewall of the tire. Gravel is then placed on the wire mesh and is constrained on the bottom by the wire mesh and on the sides by the tread of the tire. In addition to providing ballast, the gravel also provides a spawning site for certain species of fish.
The structure of the present invention is relatively inexpensive to manufacture, easy to fabricate and deploy, is extremely durable, and will maintain its integrity for many decades. The structure will deploy in an upright position on the bottom. Even with silting and bottom sedimentation, this type of structure will continue to provide a viable habitat until completely covered, which will take decades. It is expected that fish, crustacean, aquatic insects and oth
Carter, Ledyard & Milburn
Jordan Charles T.
Shaw Elizabeth
LandOfFree
Underwater fish habitat does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Underwater fish habitat, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Underwater fish habitat will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2964074