Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control
Reexamination Certificate
1998-09-03
2001-04-17
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle subsystem or accessory control
C180S167000, C180S197000, C280S005500
Reexamination Certificate
active
06219600
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention concerns a device and a method for controlling the undercarriage of a vehicle with means for the adjustment of undercarriage parameters, such as, for example, the spring travel or the spring constant, in accordance with computed control signals. The invention is suitable for use in motor vehicles, particularly for use in passenger vehicles.
Undercarriage control systems have been used increasingly in passenger vehicles during recent years to enhance the comfort and safety of these vehicles. Such an undercarriage control system permits, for example, an adjustable damping characteristic or leveling control of the vehicle body independently of vehicle loading, in order to adapt the undercarriage to different road conditions.
Undercarriage control systems are classified according to their control characteristic as passive, adaptive, semiactive and active. An overview of the various control characteristics is provided in R. Kallenbach et al., Optimierung des Fahrzeugverhaltens mit semiaktiven Fahrwerkregelungen [Optimization of vehicle behavior by means of semiactive undercarriage control systems], VDI [Verein Deutscher Ingenieure; Association of German Engineers] Reports No. 699, 1988, pp. 121-135. The technical complexity of undercarriage control systems and their resultant cost depends on the desired control characteristic, and generally increase continuously from passive to active undercarriage control. The cited document describes in particular the optimization of vehicle behavior by means of semiactive undercarriage control systems, which offer a marked cost advantage over active undercarriage control systems.
A modern concept of undercarriage control is described in W. Schramm et al., “A high-performance concept for active undercarriage control with reduced energy demand,” ATZ Automobiltechnische Zeitschrift 94 (1992), pp. 392-403. In particular, this article introduces a new concept for semiactive undercarriage control, consisting of a fully load-bearing hydropneumatic suspension with actuators in a shutoff-cylinder arrangement.
The sensing devices currently used in undercarriage control consist of travel sensors that determine the spring travel of the undercarriage at each axle, preferably at each wheel. From the present standpoint, optimum measurement acquisition would require measurement of the spring travel at each wheel suspension. Despite this high technical complexity and the associated high cost, due in particular to the use of a large number of sensors and a high available computation speed, as well as the provision of high-performance hydraulic, pneumatic and/or electrical final control elements to achieve a high control speed, the prior art undercarriage control systems are unable to achieve optimal and sufficiently rapid detection of all the situations that can arise during driving.
From digital image processing, methods and algorithms are known that can be used to identify at least partly preestablished structures and patterns in complex images and to filter them out of these images. Such methods can be used, for example, in medical technology for the automatic recognition of cancer cells in tissue specimens.
From automotive measurement technology, methods of distance measurement are known, for example involving the use of electromagnetic waves in various frequency ranges. In addition, modern navigational systems can be used in motor vehicles to furnish data regarding position and/or traffic flow.
The problem underlying the invention is to provide a device and a method for controlling the undercarriage of a motor vehicle that ensures a high degree of driving safety and driving comfort. In particular, the undercarriage control system should react quickly and optimally to all existing and immediately impending driving situations. Furthermore, the technical complexity and the associated production, installation and operating costs should be as low as possible.
SUMMARY OF THE INVENTION
The problem is solved, in a device for controlling the undercarriage of a vehicle, via means for the adjustment of vehicle parameters, such as, for example, the spring travel or the spring constant, in accordance with computed control signals, in that the device includes: signal receiving means for receiving signals from the environment of the vehicle and converting the signals into electrical environmental signals, signal processing means for determining vehicle-related data from the environmental signals, and computing means for computing the control signals for the undercarriage control system with the aid of the vehicle-related data. The signals from the environment of the vehicle can be either optical signals, for example in the form of images of the environment, electromagnetic signals from the environment, or radio signals from the environment, for example terrestrial or satellite-transmitted radio signals. Correspondingly, the signal receiving means can include, for example, a camera for receiving images, a radio antenna, or the like.
The device according to the invention offers the advantage that vehicle-related data are determined by the reception of signals from the environment of the vehicle and can be taken into account in the computation of the control signals for the undercarriage control system, so that the undercarriage control system no longer need rely solely on the measurement values determined directly on the vehicle, such as spring travel or spring deflection rate, in computing and adjusting the undercarriage parameters, but can also adjust—with foresight, so to speak—to immediately impending driving situations. On the one hand, this increases driving safety; on the other, it also nevertheless increases the reaction time available to the undercarriage control system, thereby lowering the requirements with regard to both computation speed and regulating speed. The lower requirements regarding computation speed can advantageously be utilized to achieve higher accuracy of computation, and thus higher driving safety. The lower requirements with regard to regulating speed, for example the requirement that the hydraulic, pneumatic or electrical final control elements provide appropriate spring pressure, permit the use of final control elements of smaller size, lower weight and lower power consumption. The device according to the invention further permits a high increase in driving safety, since the signal receiving means is able to detect imminent cornering or braking even before the driver of the vehicle reacts to the impending event. Furthermore, it is advantageous that devices already present in the vehicle can be used for the signal receiving means, for example a radio receiving antenna that is already on hand for the radio, or the data from a navigation system already present in the vehicle.
A particular embodiment of the invention is characterized by means for measuring transient vehicle-specific data, such as, for example, instantaneous speed or weight distribution, these transient vehicle-specific data being taken into account by the computing means in computing the control signals. This embodiment has the advantage the undercarriage control system can be optimized by the measurement and consideration of transient vehicle-specific data, thereby increasing driving safety. Transient vehicle-specific data are, for example, instantaneous speed, engine speed, transmission step, tuning angle of the steering wheel, weight, and weight distribution. It is advantageous if a number of these transient vehicle-specific data, such as speed, are already being measured routinely in the vehicle. In this way the cost of determining these data and using them for undercarriage control is, advantageously, low.
In a particular embodiment of the invention, the signal receiving means is formed by image receiving means for receiving images of the environment of the vehicle, and the signal processing means determines the road-related data through the use of digital image processing methods and algorithms. This embodiment ha
Baker & Daniels
Beaulieu Yonei
Cuchlinski Jr. William A.
Robert & Bosch GmbH
LandOfFree
Undercarriage control system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Undercarriage control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Undercarriage control system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2472671