Active solid-state devices (e.g. – transistors – solid-state diode – Responsive to non-electrical signal – Temperature
Patent
1996-02-26
1997-09-30
Ngo, Ngan Y.
Active solid-state devices (e.g., transistors, solid-state diode
Responsive to non-electrical signal
Temperature
257 43, 257444, 257446, 257448, 257459, 257613, H01L 31058
Patent
active
056729030
ABSTRACT:
A thermal detector includes a transducer layer of semiconducting yttrium barium copper oxide which is sensitive at room temperature to radiation and provides detection of infrared radiation. In a gate-insulated transistor embodiment, a layer of ferroelectric semiconducting yttrium barium copper oxide forms a gate insulator layer and increases capacitance of the transistor or latches the transistor according to the polarization direction of the ferroelectric layer.
REFERENCES:
patent: 3881181 (1975-04-01), Khajezadeh
patent: 4544441 (1985-10-01), Hartmann et al.
patent: 4745278 (1988-05-01), Hanson
patent: 4754139 (1988-06-01), Emmhulat et al.
patent: 4902895 (1990-02-01), Hanson
patent: 4940693 (1990-07-01), Shappirio et al.
patent: 4970395 (1990-11-01), Kruse, Jr.
patent: 5021663 (1991-06-01), Hornbeck
patent: 5090819 (1992-02-01), Kapitulnik
patent: 5171733 (1992-12-01), Hu
patent: 5173474 (1992-12-01), Connell et al.
patent: 5231077 (1993-07-01), Sasaki
patent: 5260225 (1993-11-01), Liu et al.
patent: 5264375 (1993-11-01), Bang et al.
patent: 5270298 (1993-12-01), Ramesh
patent: 5286976 (1994-02-01), Cole
patent: 5288649 (1994-02-01), Keenan
patent: 5304539 (1994-04-01), Allen et al.
patent: 5354989 (1994-10-01), Fenner et al.
patent: 5367167 (1994-11-01), Keenan
patent: 5369280 (1994-11-01), Liddiard
patent: 5519235 (1996-05-01), Ramesh
patent: 5527567 (1996-06-01), Desu et al.
High-Performance Infrared Thermal Imaging with Monolithic Silicon Focal Planes Operating at Room-Temperature, R. A. Wood, IEEE, 1993, pp. 175-177.
Epitaxial Growth of NbN on an Ultrathin MgO/Semiconductor System, Masayoshi Tonouchi et al., J. Appl. Phys., 64(3), 1 Aug. 1987, pp. 961-966.
Vanadium Oxide for Optical Switching and Detection, Hubert Jerominek et al., Optical Engineering/Sep. 1993, vol. 32, No. 9 pp. 2092-2099.
A Comparison of the Non-Bolometric Microwave Response with the Bolometric Optical Response of TL-and-BI-Oxide Superconductors, J.D. Chern et al., IEE 3(1), Mar. 93, pp. 2128-2131.
Status of Uncooled Infrared Imagered Imagers, Robert E. Flannery et al., SPIE vol. 1689, 1992/379-395.
Macriomachined Bolometer Arrays Achieve Low-Cost Imaging, R. Andrew Wood et al Laser Focus World, Jun. 1993, pp. 101-106.
Design of High-Tc Superconducting Bolometers for a Far Infared Imaging Array S. Verghese et al, IEEE 3(1), Mar. 1993, pp. 2115-2119.
Pyroelectric Infared Array Sensors Made of c-Axis La-Modified PBTi03 Thin Films Ryoichi Takayama et al, Sensors and Actuators, A21-A23 (1990) pp. 508-512.
Surface-Micromachined PbTiO3 Pyroelectric Detectors, D. L. Polla et al Appl. Phys. Lett. '92, (59), 3539 (3 pages).
Noise Measurement Near the Transistion Region in YBa2Cu307-delta Thin-Film Superconductor J. M. Lee et al., Physical Review B, Oct. 1, 1989, pp. 6806-6809.
Uncooled Thermal Imagining at Texas Instruments, C. Harson et al., SPIE 1992, (10 pages).
Low Frequency 1/f Noise Measurements in YBa2Cu307 Thin Films and the Implications for HTS IR Detectors, R. C. Lacoe et al., IEEE 27(2), Mar. 1991, pp. 2832-2835.
Nonthermal Optical Response of Y-Ba-Cu-O Thin Films, N. S. Kwok et al Appl. Phys. Lett. 54(24), Jun. 12, 1989, pp. 2473-2475.
Ineraction of Picosecond Optical Pulses with High Tc Superconducting Films W. R. Donaldson et al., Appl. Phys. Lett. 54(24), Jun. 12, 1989, pp. 2470-2472.
Resistive Evaporation of Superconducting Y-Ba-Cu-O Thin Films from a Single Source Jacob Azoulay et al., Appl. Phys. Lett. 52(24), Jun. 12, 1989, pp. 2467-2469.
Target Presputtering Effects on Stoichiometry and Deposition Rate of Y-Ba-Cu-O Thin Films Grown by dc Magnetron Sputtering T. I. Selinder et al., Appl. Phys. Lett. 52(22), May 30, 1988, pp. 1907-1909.
Measurements of Noise and Temperature Coefficient of Resistance on YBaCu307-delta Thin Films in Magnetic Field, Zeynep Celik-Butler et al., Appl. Phys. Lett. 60(2), Jan. 13, 1992 pp. 246-248.
Pyoelectric Imaging, Bernard M. Kulwicki et al. Texas Instruments Inc., (10 pages).
Preparation, Patterning and Properties of Thin YBa2Cu307-delta Films J. W. C. de Vries et al., Appl. Phys. Lett. 52(22), May 30, 1988, pp. 1904-1906.
Thermal Fluctuation and 1/f Noise in Oriented and Unoriented Y1Ba2Cu307-x Films Robert D. Black et al., Appl. Phys. Lett. 55(21), Nov. 20, 1989, pp. 2233-2235.
Optical Response of Epitaxial Films of YBa2Cu307-delta M. G. Forrester et al., Apply. Phys. Lett., 53(14), Oct. 3, 1988, pp. 1332-1334.
Fabrication of an Infrared Bolometer with a High Tc Superconducting Thermometer S. Verghese et al., IEE 27(2), Mar. 1991, pp. 3077-3080.
Fabrication and Measurement of High Tc Superconducting Microbolometers, M. Mahum et al. IEEE 27(2), Mar. 1991, pp. 3081-3084.
The High Tc Superconducting Bolometer, P. L. Richards et al., IEEE 25(2) Mar. 1989, pp. 1335-1338.
High Tc Superconductor Bolometer with Record Performance, J. C. Brasunes et al. Appl. Phys. Lett 64(6), 7 Feb. 1994, pp. 777-778.
YBa2Cu307 Superconductor Microbolometer Arrays Fabricated by Silicon Micromachining, B. R. Johnson et al., IEEE 3(1), Mar. 1993, pp. 2856-2859.
High-Temperature Superconducting Microbolometer, T. G. Stratton et al., Appl. Phys. Lett. 57(1), Jul. 2, 1990, pp. 99-100.
Butler Donald P.
Celik-Butler Zeynep
Shan Pao-Chuan
Ngo Ngan Y.
Southern Methodist University
LandOfFree
Uncooled ybacuo thin film infrared detector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Uncooled ybacuo thin film infrared detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uncooled ybacuo thin film infrared detector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2259105