Surgery: kinesitherapy – Kinesitherapy – Ultrasonic
Reexamination Certificate
1999-10-25
2003-04-01
Smith, Ruth S. (Department: 3737)
Surgery: kinesitherapy
Kinesitherapy
Ultrasonic
C600S439000
Reexamination Certificate
active
06540700
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasound treatment apparatus for necrosing a tumor such as a tumor by focusing ultrasound on the tumor.
A great deal of attention has recently been given to MIT (Minimally Invasive Treatment). For example, a ESWL (Extracorporeal Shock Wave Lighotriptor (Lighoripsy)) is available, which destroys a calculus by extracorporeally irradiating the calculus with energy instead of a surgical operation. Such energy is generated by a (submerged) discharge type, electromagnetic (induction) type, small-explosion type, piezoelectric type, and the like. The piezoelectric type, in particular, has the following advantages. For example, energy can be focused to a pinpoint spot, no expendable component is required, energy control is easy, and focal position control is easy (Jpn. Pat. Appln. KOKAI Publication No. 60-145131 and U.S. Pat. No. 4,526,168).
In recent years, a less invasive treatment method which focuses on QOL (Quality Of Life) is receiving a great deal of attention. The mainstream of treatment methods for malignant tumors, i.e., cancers, is constituted by surgery, radiotherapy, and chemotherapy. These treatment methods often accompany the hypofunction of an internal organ and a change in the form of the organ. For this reason, even if the patients life is prolonged, the patient must bear a large burden. QOL is the concept that tries to minimize the burden on the patient after treatment by reducing invasion due to the treatment.
One of cancer treatment techniques capable of realizing QOL is thermotherapy, and more specifically, hyperthermia that uses the difference in heat sensitivity between cancer tissue and normal tissue. In hyperthermia, the tumor (target) temperature is kept at about 42.5°, which is the necrosis temperature of a cancer cell. Since the necrosis temperature of normal tissue is slightly higher than that of cancer tissue, the normal tissue is not necrosed.
Heating is performed by various method. If heating is performed by using electromagnetic waves such as microwaves, the electromagnetic waves may be deflected by the electrical characteristics of a living body and may necrose normal tissue around the tumor. In addition, the electromagnetic field can hardly reach the deep tumorous region or deep lying region within a body which depth is more than 5 cm from the skin. As a means for solving this problem, a method of inserting a microwave/RF wave antenna into a portion near a tumor has received a great of attention (Isoda et al., J. Microwave Surgery).
Advantageous characteristics of ultrasound are that no surgical operation is required, energy can be focused to a high degree, energy control is easy, and energy can reach relatively deep (Jpn. Pat. Appln. KOKAI Publication No. 61-139551). Recently, a treatment method of necrosing a tumor accompanying thermal coagulation by instantaneously heating the tumor to 80° C. or more by using very strong ultrasound whose ultrasound intensity reaches several hundred to several thousand W/cm
2
at the focus has been developed (G. Vallancien et al.: Progressin Urol, 1991, 1, 84-88, U.S. Pat. No. 5,150,711).
In this treatment method, since ultrasound is focused to a very high degree to form a very small spot, the focus of ultrasound must be moved to entirely treat a large tumor. For this reason, it is required to improve the positioning precision of the focus with respect to the tumor. To improve the positioning precision, the present inventors have developed a technique of imaging the body temperature distribution by using an MRI (Magnetic Resonance Imaging Apparatus) on the basis of the temperature dependency of chemical shift (Jpn. Pat. Appln. KOKAI Publication No. 5-253192). In addition, a technique of imaging the intensity distribution of treatment ultrasound by receiving the echoes of the treatment ultrasound generated by a treatment ultrasound source with an imaging probe has been developed (U.S. Pat. Nos. 1,851,304, 1,821,772, and 1,765,452). An improvement in positioning precision can be attained by using various techniques, as described above.
In addition to an improvement in positioning precision, another challenge for ultrasound treatment is optimization of the amount of energy injected (ultrasound intensity×irradiation period). According to the experiment conducted by the present inventors, injection of excessive energy causes destruction of a tissue cell beyond thermal degeneration. In a thermal degenerate state, the tissue cell is necrosed, but it maintains its form. If, however, the tissue cell is destroyed, its original form changes. For this reason, a tumor or neighboring blood vessels may be damaged. As one method of solving this problem, the present inventors have proposed a phase difference driving method of decreasing the ultrasound intensity (focus intensity) at a focus and widening the acoustic field (Japanese Patent Application Nos. 10-278684 and 10-279088). However, optimization rules for focus intensity and irradiation periods could not be established.
As is known, ultrasound energy is absorbed at an acoustic impedance boundary. For this reason, a portion exhibiting a large difference in acoustic impedance, e.g., the body surface of a patient, is unintentionally heated, and may be burnt. There are no appropriate countermeasures against such situations.
Often, a portion near a focus is scanned with an imaging ultrasound probe to acquire B-mode images near the focus so as to check the progress of treatment while strong treatment ultrasound is irradiated. Typically, the frequency of the strong treatment ultrasound is set to 1.6 MHz, whereas the driving frequency of the imaging ultrasound probe is set to 3.7 to 5.0 MHz. The main components of strong treatment ultrasound echoes are not received by the vibrator of the imaging ultrasound probe. However, harmonic components of the echoes are received as noise by the vibrator of the imaging ultrasound probe. Since the noise is much higher in intensity than the imaging ultrasound, the resultant B-mode image becomes almost white. This makes it difficult to observe the tumor.
As a means for solving this problem, Jpn. Pat. Appln. KOKAI Publication Nos. 60-241436, 60-241436, and 10-216145 disclose a technique of stopping irradiation of treatment ultrasound at predetermined intervals, and executing scanning operation using imaging ultrasound only during the stop periods, thereby acquiring B-mode images without noise.
On the other hand, the operator can use almost white B-mode images to visually check whether treatment ultrasound is really irradiated. If, however, scanning operation using imaging ultrasound is executed only during stop periods of treatment ultrasound, the operator cannot visually check whether the treatment ultrasound is really irradiated, although B-mode images without noise can be acquired.
In the arrangements disclosed in Jpn. Pat. Appln. KOKAI Publication Nos. 60-241436 and 10-216145, a control signal must be directly input from an ultrasound treatment apparatus to an ultrasound transmitting/receiving section of an ultrasound image diagnostic apparatus or an output must be directly extracted from the ultrasound treatment apparatus. For this reason, if at least a conventional ultrasound treatment apparatus is to be used, the ultrasound transmitting/receiving section inside the apparatus must be modified, or the ultrasound treatment apparatus and the ultrasound image diagnostic apparatus must be integrated. When image information is to be loaded from various image diagnostic apparatuses, e.g., an X-ray image diagnostic apparatus, X-ray CT apparatus, and MRI apparatus, other than an ultrasound treatment apparatus, it is difficult to make modifications for loading of image information with respect to various image diagnostic apparatuses to be combined.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to perform safe, appropriate medical treatment by using an ultrasound treatment apparatus.
According to the present invention, medical treatment is performed under a
Aida Satoshi
Fujimoto Katsuhiko
Hazama Yoichi
Kosaku Hideki
Takada Yoichi
Kabushiki Kaisha Toshiba
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
Smith Ruth S.
LandOfFree
Ultrasound treatment apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrasound treatment apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound treatment apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015677