Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices
Reexamination Certificate
2002-05-07
2004-01-06
Dougherty, Thomas M. (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Piezoelectric elements and devices
Reexamination Certificate
active
06674216
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to an ultrasound portable tubular transducer that generates cavitation in liquids, in which an electromechanical transducer, is solderless embedded, at one end and inside a metallic pipe. The transducer resonates at the resonant frequency of the pipe. The transducer's other end has embedded either a countermass or other electromechanical transducer of identical characteristics and identical assemblage and with connecting cables running through the countermass or through a node of minimal vibration of the metallic pipe, where a smaller diameter pipe is fixed for its support, which is particularly apt to perform tasks that require ultrasound cavitation in liquids.
The transducer of the present invention has several uses that are advantageous. One such use is the cleaning of different types of pieces or parts without requiring the use of stainless steel containers or any other specific-form container. Another such use is the cleaning of different pieces or parts using different cleaning liquids without requiring the use of several cleaning machines. Another use is the cleaning of different pieces or parts taking advantage of using existing recipients such as vats, sinks, buckets, boxes used in surgery, as well as glass containers. Another use is the cleaning of receptacles filled with liquids such as tanks or sinks. A further use is the cleaning of volumes that can be filled with liquids such as dosing apparatuses, mixing or kneading machines, as well as the interior part of pipes.
At present, the ultrasonic cleaning of different pieces is performed in a liquid medium contained inside stainless steel vats with transducers glued to their exteriors. These transducers being of the Langevin type which make them vibrate, thus provoking a phenomenon called cavitation. This cavitation causes an effect analogous to a microscopic brushing to the visible as well as the non-visible pieces or parts.
The size of the vat to be used and the required ultrasonic power are determined by the size or by the quantity of the pieces to be cleaned.
This is a costly solution because this method requires stainless steel vats of different sizes which have low efficiency and are very noisy. When the use of several transducers to make vibrate the vats and the vats to make vibrate the liquid are required, too much energy is lost. In addition, detuning of the transducers among themselves generates intense noise which is not only uncomfortable but harmful to the health of the user. This solution is of limited reliability because the transducers are glued and may become unglued. In addition, this method is not very flexible because the washing can only take place inside the machine.
Another type of solution is the use of submergible transducers. This method typically consists of using several transducers of the Langevin type which are glued inside a hermetic stainless steel box. In this method tubular-type transducers can also be used. These transducers are of greater efficiency.
Tubular transducers permit greater freedom because the vat does not have to be a stainless steel one, they generate the ultrasound in homogenous form, occupy little space, and the transducer or transducers to be used may be determined by the power density needed.
When each tubular transducer is excited by means of a self-syntony generator and when no vibration from the walls of the vat takes place as the working principle, the noise is reduced to a great extent and the efficiency is increased significantly.
These transducers are placed in a fixed manner to the vat. The user will be searching their best position and will work with the transducers being totally submerged in order to dissipate the heat in the liquid. This means these transducers have not been thought of for portable use.
Transducers of this type are found in U.S. Pat. No. 5,200,666 to Walter et al., and in U.S. Pat. No. 6,111,337 to Christensen.
SUMMARY OF THE INVENTION
In order to make up for all the above-mentioned disadvantages, in the present invention, the electromechanical transducer or transducers are coupled at the inside end of the metallic pipe that resonates and that serves, at the same time, as container, and that is supported by a handling means such as a pipe with a diameter smaller than that of the resonant metallic pipe and that is located in the center of the resonant metallic pipe or in the countermass embedded at one end of the metallic pipe.
In the countermass configuration, where the electromechanical transducer is located inside one of the ends of the metallic pipe, a greater ultrasound intensity is radiated at this end. This is of particular interest to a portable application, since this allows this end to face the dirtiest parts of the piece or part to be washed.
In addition, this configuration allows for better dissipation of the heat than in other known tubular transducers, because the surface in contact with the liquid is greater.
Since the countermass presents minimum vibration and the coupling to the smaller diameter pipe supporting it is weak, the vibrations are not transmitted and do not generate discomfort to the user while he sustains it with the hand.
In the symmetrical configuration where two electromechanical transducers are equal at the ends, the difference in radiation between the ends and the pipe is not too great, as this receives twice the power. This is desirable as the objective is to place the pipe in front of the piece or part to be cleaned. Also the heat is better dissipated in the liquid because the tubular transducer has more surface in contact with same.
Since the center of the pipe has a minimum vibration and coupling to the smaller diameter pipe that supports it is weak, the vibrations are not transmitted and therefore do not generate disturbances to the user while he sustains it with the hand or to any mechanism of support.
In both cases an abrupt change of impedance is produced when the transducers are taken out of the liquid, wherefrom if one were to operate the transducers in a continuous manner, taking the tubular transducer out of one vat and transferring it to another vat without damaging the tubular transducer, it is necessary to constantly sense the impedance by means of reading, in real time, the output tension and the current output from the generator in such manner that, when the impedance goes to below an established value Z min=V output/I output, at this moment, the energy coming from the generator must be interrupted. This energy can then be reestablished in a continuous manner only when the impedance returns to its normal level.
This way, overheating of the electromechanical transducer is avoided. At the same time, it allows for the taking out and for the placing in of the portable transducer of the invention in different vats and liquids at will, and without having to shut off the generator every time, thus avoiding operational mistakes.
The portable characteristic amplifies enormously the amount of possible applications and extends the use of ultrasound.
It is worth noting that with ultrasound it is possible to clean with biodegradable liquids that are not contaminant. This means that as its use increases it improves both the conditions for the environment as well as the conditions for the users.
For example, it allows the cleaning of different pieces with different liquids in vats with different shapes and different materials using the same transducer and passing said transducer from one vat to another.
It also allows for the use of an existing sink, such as a kitchen sink, to clean silverware, dishes, or any other item desired.
The tubular transducer may also be mounted at an end of a flexible pipe where the energy-conducting cables go, which configuration permits introduction of the transducer into clogged pipes and be able to get the clogging material or rust out, thereby increasing their useful lives. This being an innovative application that avoids costly changes of pipes.
Because of its portability the transducer of the invention can al
Addison Karen
Dougherty Thomas M.
Finnegan Henderson Farabow Garrett & Dunner L.L.P.
LandOfFree
Ultrasound portable tubular transducer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrasound portable tubular transducer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound portable tubular transducer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3206339