Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-10-05
2002-10-15
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S447000
Reexamination Certificate
active
06464638
ABSTRACT:
FIELD OF THE INVENTION
The present invention is generally related to ultrasound imaging systems, and more particularly, to an ultrasound imaging system and method that employs spatial compounding to reduce speckle in ultrasound imaging.
BACKGROUND OF THE INVENTION
Ultrasonic imaging has become an important and popular diagnostic tool with a wide range of applications. Particularly, due to its non-invasive and typically non-destructive nature, ultrasound imaging has been used extensively in the medical profession. Modem high-performance ultrasound imaging systems and techniques are commonly used to produce two-dimensional diagnostic images of internal features of an object (e.g., portions of the anatomy of a human patient). A diagnostic ultrasound imaging system generally uses a wide bandwidth transducer to emit and receive ultrasound signals. The ultrasound imaging system forms images of the internal tissues of a human body by electrically exciting an acoustic transducer element or an array of acoustic transducer elements to generate ultrasonic pulses that travel into the body. The ultrasonic pulses produce echoes as they reflect off of body tissues that appear as discontinuities to the propagating ultrasonic pulses. The various echoes return to the transducer and are converted into electrical signals that are amplified and processed to produce an image of the tissues. These ultrasonic imaging systems are of significant importance to the medical field by providing physicians real-time high-resolution images of internal features of a human anatomy without resort to more invasive exploratory observation techniques such as surgery.
Ultrasonic imaging systems employ an acoustic transducer to radiate and receive a plurality of ultrasonic pulses. The acoustic transducer, which radiates the ultrasonic pulses, typically comprises a piezoelectric element or an array of piezoelectric elements. As is known in the art, a piezoelectric element deforms upon application of an electrical signal to produce the transmitted ultrasonic pulses. Similarly, the received echoes cause the piezoelectric element to deform and generate a corresponding receive electrical signal. The acoustic transducer is often packaged in a handheld device that allows an operator substantial freedom to manipulate the transducer over a desired area of interest. The transducer is often connected via a cable to a control device that generates and processes the electrical signals. In turn, the control device may transmit image information to a real-time viewing device, such as a display monitor. In alternative configurations, the image information may also be transmitted to physicians at a remote location and or stored in a recording device to permit viewing of the diagnostic images at a later time.
One fundamental problem in all types of ultrasound imaging is noise from back-scattered signals, which obscures the details of the target image or echo. One type of noise, commonly known as “speckle,” results from constructive and destructive interference, and appears as a random mottle superimposed on the image. Normally, speckle is received from objects having dimensions smaller than the wavelengths generated by the ultrasound energy source, making it impossible to reduce the speckle simply by increasing the resolution of the device. Moreover, speckle originates from objects that are stationary and randomly distributed. Since the speckle has no phase or amplitude variation over time, one cannot suppress the speckle by averaging the image signals over time. In other words, speckle signals are coherent and cannot be reduced by time averaging.
One way to reduce speckle is through a method known as spatial compounding. The idea is to insonify a target image with ultrasonic energy and receive or capture the target image from a number of different vantage points. The multiple received images related to each of the various vantage points are then mathematically combined to reduce the speckle. The success of the method is due to the statistical independence of the speckle patterns when viewed from multiple vantage points, and the fact that the target size is much larger than the speckle causing scatterers. By mathematically combining (e.g., averaging) a plurality of images formed from information gathered from a number of vantage points, the speckle patterns lack correlation, while the target echoes remain correlated and virtually unchanged. As a result of the lack of correlation in the speckle patterns between the various vantage points, the variance in the speckle patterns can be reduced without degrading the target image. The calculations to mathematically combine images formed from different vantage points for reducing speckle are well known.
There are two known methods for generating a spatially compounded ultrasound image. A first method, uses a conventional transducer that is moved to various vantage points with an articulated arm to acquire the necessary images. The transducer location is accurately measured by sensing devices in order to locate each of the images. An example of a compound image scanner using angular sensing devices on an arm assembly is disclosed in U.S. Pat. No. 4,431,007, to Amazeen et al., entitled, “Referenced Real-Time Ultrasonic Image Display.” In practice, however, the arm assembly is awkward and inflexible to operate, and the sensing devices add significant complexity and cost to the ultrasonic imaging system. A second technique uses a transducer having an array of transducer elements to generate two or more images at slightly different viewing angles from a fixed transducer location.
Typically, the way to generate multiple images from different directions with a “fixed” transducer is to excite different cells or groups of cells of a linear or curved linear array of piezoelectric transducer elements, which are used to generate and receive the ultrasound energy. The vantage point for an ultrasound beam is typically controlled by the physical position of an active aperture used for forming the ultrasound beam. Thus the groups in a fixed transducer must be separated along the array in order to achieve the required spatially separated vantage points.
By way of example, one can separate a linear array of N transducer elements into M sections, each section having N/M contiguous transducer elements and defined by an unique location or vantage point along the array. Each section may be electrically excited one at a time in succession with the resulting ultrasound beam from each of the transducer sections steered so that all M beams are focused at substantially the same region, but from different directions having their origin at the face of the transducer array. Speckle can then be reduced by combining the M ultrasound beams (controlled by both transmit and receive processing) from the related M different vantage points. A problem with such methods is that in order to control the location of the vantage points, the transmit and receive apertures must be reduced since the aperture locations in part define the origin of the ultrasound beams and hence the vantage point. Instead of using the entire transducer element array, the transducer element section method described above uses portions of the transducer element array, which may significantly reduce the aperture size of the transducer array and the lateral resolution of the reflected images. In addition, the reduced aperture size of such methods may significantly reduce the signal strength and decreases the signal to noise ratio for the received target echoes.
Another known method for compounding an ultrasonic image is to perform a technique known as frequency compounding. An example of a frequency compounding technique is disclosed in U.S. Pat. No. 4,350,917, to Lizzi et al., entitled, “Frequency-Controlled Scanning of Ultrasonic Beams.” In accordance with Lizzi, a transducer having a piezoelectric element may be used with a transmit signal having a varying frequency to control the radiation direction of an ultrasound transmit beam. A problem with frequency
Adams Darwin P
Thiele Karl E
Imam Ali M.
Koninklijke Philips Electronics , N.V.
Lateef Marvin M.
Vodopia John
LandOfFree
Ultrasound imaging system and method for spatial compounding does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrasound imaging system and method for spatial compounding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound imaging system and method for spatial compounding will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986423