Ultrasonic liquid fuel injection apparatus and method

Fluid sprinkling – spraying – and diffusing – Processes – Of fuel injection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S102100, C239S102200, C137S013000, C137S828000, C251S129060

Reexamination Certificate

active

06450417

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic liquid fuel injection apparatus. The present invention also relates to a method of ultrasonically injecting liquid fuel.
SUMMARY OF THE INVENTION
The present invention provides an ultrasonic apparatus and a method for injecting a pressurized liquid fuel by applying ultrasonic energy to a portion of the pressurized liquid fuel so that the liquid fuel can be injected into an internal combustion engine. The apparatus includes a die housing which defines a chamber adapted to receive a pressurized liquid fuel and a means for applying ultrasonic energy to a portion of the pressurized liquid fuel. The die housing includes a chamber adapted to receive the pressurized liquid fuel, an inlet adapted to supply the chamber with the pressurized liquid fuel, and an exit orifice (or a plurality of exit orifices) defined by the walls of a die tip and adapted to receive the pressurized liquid fuel from the chamber and pass the liquid fuel out of the die housing. The means for applying ultrasonic energy is located within the chamber and may be, for example, an immersed ultrasonic horn. According to the invention, the means for applying ultrasonic energy is located within the chamber in a manner such that no ultrasonic energy is applied to the die tip (i.e., the walls of the die tip defining the exit orifice).
In one embodiment of the ultrasonic fuel injector apparatus, the die housing may have a first end and a second end and the exit orifice is adapted to receive the pressurized liquid fuel from the chamber and pass the pressurized liquid fuel along a first axis. The means for applying ultrasonic energy to a portion of the pressurized liquid fuel is an ultrasonic horn having a first end and a second end. The horn is adapted, upon excitation by ultrasonic energy, to have a node and a longitudinal mechanical excitation axis. The horn is located in the second end of the die housing in a manner such that the first end of the horn is located outside of the die housing and the second end is located inside the die housing, within the chamber, and is in close proximity to the exit orifice. Alternatively, both the first end and the second end of the horn may be located inside the die housing.
The longitudinal excitation axis of the ultrasonic horn desirably will be substantially parallel with the first axis. Furthermore, the second end of the horn desirably will have a cross-sectional area approximately the same as or greater than a minimum area which encompasses all exit orifices in the die housing.
The ultrasonic fuel injector apparatus may have an ultrasonic horn having a vibrator means coupled to the first end of the horn. The vibrator means may be a piezoelectric transducer or a magnetostrictive transducer. The transducer may be coupled directly to the horn or by means of an elongated waveguide. The elongated waveguide may have any desired input:output mechanical excitation ratio, although ratios of 1:1 and 1:1.5 are typical for many applications. The ultrasonic energy typically will have a frequency of from about 15 kHz to about 500 kHz, although other frequencies are contemplated.
In an embodiment of the present invention, the ultrasonic horn may be composed of a magnetostrictive material. The horn may be surrounded by a coil (which may be immersed in the liquid) capable of inducing a signal into the magnetostrictive material causing it to vibrate at ultrasonic frequencies. In such cases, the ultrasonic horn may be simultaneously the transducer and the means for applying ultrasonic energy to the multi-component liquid.
The apparatus includes a die housing which defines a chamber adapted to receive a pressurized liquid and a means for applying ultrasonic energy to a portion of the pressurized liquid. The die housing includes a chamber adapted to receive the pressurized liquid, an inlet adapted to supply the chamber with the pressurized liquid, and an exit orifice (or a plurality of exit orifices) defined by the walls of a die tip, the exit orifice being adapted to receive the pressurized liquid from the chamber and pass the liquid out of the die housing. Generally speaking, the means for applying ultrasonic energy is located within the chamber. For example, the means for applying ultrasonic energy may be an immersed ultrasonic horn. According to the invention, the means for applying ultrasonic energy is located within the chamber in a manner such that no ultrasonic energy is applied to the die tip (i.e., the walls of the die tip defining the exit orifice).
In one embodiment of the present invention, the die housing may have a first end and a second end. One end of the die housing forms a die tip having walls that define an exit orifice which is adapted to receive a pressurized liquid from the chamber and pass the pressurized liquid along a first axis. The means for applying ultrasonic energy to a portion of the pressurized liquid is an ultrasonic horn having a first end and a second end. The horn is adapted, upon excitation by ultrasonic energy, to have a node and a longitudinal mechanical excitation axis. The horn is located in the second end of the die housing in a manner such that the first end of the horn is located outside of the die housing and the second end is located inside the die housing, within the chamber, and is in close proximity to the exit orifice.
The longitudinal excitation axis of the ultrasonic horn desirably will be substantially parallel with the first axis. Furthermore, the second end of the horn desirably will have a cross-sectional area approximately the same as or greater than a minimum area which encompasses all exit orifices in the die housing. Upon excitation by ultrasonic energy, the ultrasonic horn is adapted to apply ultrasonic energy to the pressurized liquid within the chamber (defined by the die housing) but not to the die tip which has walls that define the exit orifice.
The present invention contemplates the use of an ultrasonic horn having a vibrator means coupled to the first end of the horn. The vibrator means may be a piezoelectric transducer or a magnetostrictive transducer. The transducer may be coupled directly to the horn or by means of an elongated waveguide. The elongated waveguide may have any desired input:output mechanical excitation ratio, although ratios of 1:1 and 1:1.5 are typical for many applications. The ultrasonic energy typically will have a frequency of from about 15 kHz to about 500 kHz, although other frequencies are contemplated. In an embodiment of the present invention, the ultrasonic horn may be composed of a magnetostrictive material and be surrounded by a coil (which may be immersed in the liquid) capable of inducing a signal into the magnetostrictive material causing it to vibrate at ultrasonic frequencies. In such case, the ultrasonic horn may be simultaneously the transducer and the means for applying ultrasonic energy to the multi-component liquid.
In an aspect of the present invention, the exit orifice may have a diameter of less than about 0.1 inch (2.54 mm). For example, the exit orifice may have a diameter of from about 0.0001 to about 0.1 inch (0.00254 to 2.54 mm) As a further example, the exit orifice may have a diameter of from about 0.001 to about 0.01 inch (0.0254 to 0.254 mm).
According to the invention, the exit orifice may be a single exit orifice or a plurality of exit orifices. The exit orifice may be an exit capillary. The exit capillary may have a length to diameter ratio (L/D ratio) of ranging from about 4:1 to about 10:1. Of course, the exit capillary may have a L/D ratio of less than 4:1 or greater than 10:1.
In an embodiment of the invention, the exit orifice is self-cleaning. In another embodiment of the invention, the apparatus may be adapted to emulsify a pressurized multi-component liquid. In another embodiment of the invention, the apparatus may be adapted to produce a spray of liquid. For example, the apparatus may be adapted to produce an atomized spray of liquid. Alternatively and/or additionally, the apparatus may be adapt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasonic liquid fuel injection apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasonic liquid fuel injection apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic liquid fuel injection apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2897371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.