Measuring and testing – Volume or rate of flow – By measuring vibrations or acoustic energy
Reexamination Certificate
2002-02-01
2003-11-11
Lefkowitz, Edward (Department: 2855)
Measuring and testing
Volume or rate of flow
By measuring vibrations or acoustic energy
Reexamination Certificate
active
06644130
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an ultrasonic flow meter that measures the flow volume of a liquid flowing through a pipe using ultrasonic waves.
2. Description of the Related Art
An ultrasonic flow meter is known in the prior art that uses ultrasonic waves to function as a flow meter that measures the flow volume of a liquid flowing through a pipe.
This ultrasonic flow meter provides two measuring units having a transducer and provided at an interval in the lengthwise direction on a measuring pipe through which liquid flows. Ultrasonic waves are emitted from one of the transducers which are then received by the other transducer. Alternatively, ultrasonic waves are emitted from the other transducer and then received by the first transducer. The flow rate of the liquid in the measuring pipe is determined from the difference in propagation times of these ultrasonic waves, and flow volume is then measured from this flow rate.
However, although this ultrasonic flow meter has the transducer formed into the shape of a ring and fixed to the measuring pipe inserted into the transducer by adhesive, or has the transducer formed into the shape of a circular arc fixed to the outer periphery of the measuring pipe by adhesive, in these types of structures, there is a risk of variation occurring in the thickness of the adhesive layer in the gap between the transducer and measuring pipe, and in such case, the characteristics of the measurement data fluctuate which causes problems in accurate measurement of flow volume.
Moreover, in a case of such a structure in which the transducer is adhered to the measuring pipe by adhesive, there is the risk of formation of a void composed of air bubbles and so forth of the adhesive between the transducer and pipe, thereby preventing adequate transmission of ultrasonic waves between the transducer and liquid in the pipe, which again has the risk of causing problems in accurate measurement of flow volume.
SUMMARY OF THE INVENTION
In consideration of the above circumstances, an object of the present invention is to provide an ultrasonic flow meter that is capable of accurately measuring flow volume.
In order to achieve the above object, the present invention provides an ultrasonic flow meter comprising: a measuring pipe through which liquid flows and two measuring units provided on the measuring pipe at an interval in its lengthwise direction, and which measures flow volume by measuring the flow rate of a liquid from the difference in propagation times of ultrasonic waves in both directions between these measuring units; wherein, each measuring unit has a tubular tightly adhered tube of a prescribed thickness made of material having elasticity attached in the state in which it is tightly adhered to the outer peripheral surface of the measuring pipe, and a transducer maintained in the state in which it is pressed against the outer peripheral surface of the tightly adhered tube.
In other words, since the transducer is attached to the tubular tightly adhered tube of a prescribed thickness made of a material having elasticity, which is attached in a tightly adhered state to the outer periphery of the measuring pipe, in a state in which it is pressed against the tightly adhered tube, the transmission of vibrations between the transducer and fluid inside the measuring pipe can be carried out uniformly, and as a result, the occurrence of fluctuations in measurement data, caused by the transducer being fixed unevenly due to variations in thickness of the adhesive or by air bubbles remaining in the adhesive as in the case of attaching the probe to the measuring pipe with adhesive as in the prior art, can be reliably prevented.
In addition, even in the case of, for example, using adhesive and so forth for fixing a tightly adhered tube, the transducer can be fixed to the measuring pipe with a thin layer and small amount of adhesive. This means that variations in thickness associated with the use of adhesive as well as fluctuations in measurement data caused by residual air bubbles and so forth are prevented. In addition, since ultrasonic waves are transmitted to the transducer or emitted from the transducer through a tightly adhered tube, the ultrasonic waves are maintained in a stable state, or in other words, the sensitivity of the transducer is maintained in a suitable state.
In the ultrasonic flow meter of the present invention, it is preferable that the tightly adhered tube is formed so that its inner diameter is smaller than the outer diameter of the measuring pipe.
Namely, since the inner diameter of the tightly adhered tube is formed to be smaller than the outer diameter of the measuring pipe, by spreading open the tightly adhered tube and attaching to the measuring pipe, the inner peripheral surface of the tightly adhered tube can reliably be suitably tightly adhered to the outer peripheral surface of the measuring pipe.
In this manner, since the tightly adhered tube is fixed to the measuring pipe by fastening the tightly adhered tube itself, there is no need to use an adhesive, and even in the case adhesive is used, adhesive can be provided between the tightly adhered tube and measuring pipe in the form of a thin layer of uniform thickness and without the presence of residual air bubbles.
Furthermore, in the ultrasonic flow meter of the present invention, it is preferable that an attachment indentation is formed in the measuring pipe over the peripheral direction, and the tightly adhered tube fits into the attachment indentation.
In this manner, by fitting the tightly adhered tube into attachment indentation formed in the measuring pipe, the tightly adhered tube can be reliably attached to a prescribed position of the measuring pipe in which the transducer is fixed.
Furthermore, the measuring units provided along the lengthwise direction of the measuring pipe are required to be arranged at a prescribed interval in terms of measuring flow volume. Therefore, the interval of the measuring units can be reliably determined by specifying the interval of the attachment indentations. In addition, in the case of producing a plurality of ultrasonic flow meters, the interval between the measuring units is maintained constant, thereby resulting in stable product accuracy. In addition, since the position at which the tightly adhered tube fits is specified, assembly work is carried out easily.
Furthermore, in the ultrasonic flow meter of the present invention, it is preferable that an engaging indentation is formed in the measuring pipe over the peripheral direction, and an engaging protrusion is formed on the inner periphery of the tightly adhered tube over the peripheral direction that engages with the engaging indentation, the tightly adhered tube being attached to the measuring pipe by engaging the engaging indentation and the engaging protrusion.
In this manner, by fitting an engaging protrusion formed on the tightly adhered tube into the engaging indentation formed in the measuring pipe, the tightly adhered tube can be reliably attached to a prescribed position of the measuring pipe in which the transducer is fixed.
Here, it is not necessary to fit the entire tightly adhered tube to the measuring pipe. Furthermore, the shape of the engaging indentation formed in the measuring pipe can be changed as desired to match the shape of the engaging protrusion, or the width of the engaging indentation can be formed to be narrower. Making the width of the engaging indentation narrower results in a reduction in the number of positions where the wall thickness of the measuring pipe is decreased, thereby avoiding a decrease in the strength of the measuring pipe.
Furthermore, in the ultrasonic flow meter of the present invention, it is preferable that an engaging protrusion is formed on the measuring pipe over the peripheral direction, and an engaging indentation is formed in the inner periphery of the tightly adhered tube over the peripheral direction that is engaged with the engaging protrusion, the tightly adhered tube bei
Imai Hiroshi
Takada Akira
Kolisch & Hartwell, P.C.
Lefkowitz Edward
Mack Carey D.
Surpass Industry Co. Ltd.
LandOfFree
Ultrasonic flow meter having a tubular elastic transducer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrasonic flow meter having a tubular elastic transducer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic flow meter having a tubular elastic transducer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3121685