Ultrasonic flow meter

Measuring and testing – Volume or rate of flow – By measuring vibrations or acoustic energy

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7386118, G01F 100

Patent

active

053515609

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The present invention relates to an ultrasonic flow meter having a measurement tube through which gas/liquid flows and having ultrasonic emission/reception transducers, which, for a "W" shaped ultrasonic path with multiple reflections provided within the measurement tube, are located at a given spacing from one another on a common side wall of the measurement tube.
Flow meters operated by ultrasound are known from the prior art and are proposed in PCT application PCT/EP90/02178 filed 13 Dec. 1990 and in the parallel patent applications GR 89 P 2014 DE and GR 89 P 2015 DE. The content of the specifications of these applications is an additional component part of the present invention specification.
The flow meters consist essentially of a tube through which the pertinent medium flows and within the interior of which an acoustic path extends. The influencing of the ultrasound by the flowing medium is the parameter from which, for example, the volume of gas or liquid flowing through the tube cross section per unit time is to be ascertained. Such flow meters are suitable, for example, as gas flow meters such as, for example, as domestic gas meters.
The aforementioned acoustic measurement path is formed between an acoustic emission transducer and an acoustic reception transducer. The emission transducer and reception transducer are fitted in a manner known per se to the side wall of the tube through which the medium flows, and specifically in such a manner that an acoustic beam is passed from the emission transducer into the interior of the tube, with a component oriented parallel to the direction of flow. Oblique injection of the ultrasound is the method in widespread use; in this case, the ultrasound is reflected at the opposite wall of the tube and executes, for example with three successive reflections at the inner wall of the tube, an in total W-shaped path between the emission transducer and the reception transducer.
The evaluation of the influencing of the ultrasound by the flow takes place, as a rule, in such a manner that the measurement path is traversed by the ultrasound alternately in a downstream and upstream direction, and the difference value resulting from the influencing of the flow, for the two ultrasound measurements, is the evaluation signal. Thus, the emission transducer and reception transducer are used interchangeably in terms of operation.
The aforementioned W-shaped path is preferred as against an only V-shaped path, because advantages can be achieved with a predetermined spacing, axial when related to the tube axis, between the emission transducer and the reception transducer. It is also possible to provide an ultrasound path with, instead of three reflections, even more reflections, especially an odd number thereof. In this case, it is essential that the ultrasonic transducers do not directly "see" one another, i.e. that ultrasound does not pass without reflection from the respective emission transducer to the pertinent reception transducer.
If use is made of the W-shaped ultrasound path 21 in an arrangement for example as shown in FIG. 1, in which the lower and upper tube wall in the Figure are designated by 4 and 5 and the transducers are designated by 11 and 12, then a signal transmission unavoidably also takes place via the V-shaped path 22 between the emission transducer and the reception transducer. This is based on the fact that the radiation lobes of the emission transducer and the reception lobe of the reception transducer cannot be directed with an arbitrarily selectable degree of sharpness.
In the two aforementioned older patent applications, proposals have been made for the most extensive possible suppression of a parasitic signal of the V-shaped path as compared with the useful signal of the W-shaped path. On the one hand, this involves the use of a markedly rectangular tube cross section, with a ratio of height H to width B exceeding 2:1 to 15:1, preferably 5:1 to 6:1. In addition, such a rectangular cross section has the advantage of acting

REFERENCES:
patent: 4555951 (1985-12-01), Gutterman
patent: 4596133 (1986-06-01), Smalling et al.
patent: 4754650 (1988-07-01), Smalling et al.
Siemens AG, (1986) pp. 126-134 "Ultraschallsensor fur hochauflosende Durchflussmessung" by Jena.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasonic flow meter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasonic flow meter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic flow meter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-573965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.