Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2002-05-06
2003-12-09
Imam, Ali M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S447000
Reexamination Certificate
active
06659952
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of Japanese Application No. 2001-136481 filed May 7, 2001.
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic image displaying method and an ultrasonic diagnosing apparatus, and more specifically to an ultrasonic image displaying method and an ultrasonic diagnosing apparatus both capable of inhibiting blooming in which a thick blood vessel is projected so as to protrude-outside from an actual vessel wall and preventing degradation of the capability of projecting a thin blood vessel.
In a conventional ultrasonic diagnosing apparatus, adjustments for reducing gain (magnitude of a conversion coefficient where power is converted to a pixel value) have been carried out to inhibit blooming upon execution of a power display (Power Doppler Imaging).
While a gain reduction allows inhibition of the blooming, the capability of projecting thin blood vessels is also lowered.
This is the same even where contrast agents are administered. Namely, when attempt is made to inhibit blooming of thick blood vessels raised in power with the injection of the contrast agents, it is necessary to greatly reduce the gain. The capability of projecting the thin blood vessels is eventually degraded even if the contrast agents are administered and hence the power is raised.
With this view, a problem arises in that it is hard to control the gain.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide an ultrasonic image displaying method and an ultrasonic diagnosing apparatus both capable of inhibiting blooming and preventing degradation of the capability of projecting thin blood vessels.
In a first aspect, the present invention provides an ultrasonic image displaying method characterized by transmitting an ultrasound wave to within an object to thereby collect ultrasound echo signals from within the object, acquiring power and variance at a large number of two-dimensionally distributed sampling points, increasing luminance according as pixels corresponding to sampling points high in power, and generating and displaying an ultrasonic image in which, when there are two sampling points identical in power but different in variance and low in power, the luminance of the sampling point relatively large in variance is set higher than luminance of the sampling point relatively small in variance.
In the ultrasonic image displaying method according to the first aspect, the luminance is made high according as a pixel corresponding to each sampling point high in power in a manner similar to the conventionally known power display. However, the luminance at each sampling point relatively large in variance is increased in a power low region in addition to the above.
When contrast agents are administered to increase power, blooming can be inhibited by greatly reducing gain. On the other hand, the capability of projecting thin blood vessels in the form of a power display is also degraded due to the great reduction in gain. However, when the contrast agents are administered, the variance becomes also large as well as an increase in power. Therefore, the luminance of each sampling point relatively large in variance is turned up and thereby raised in the region low in power P, wherein the blooming presents a problem. As a result, the capability of projecting the thin blood vessels is enhanced. Namely, it is possible to inhibit the blooming and prevent degradation in the capability of projecting the thin blood vessels.
In a second aspect, the present invention provides an ultrasonic image displaying method characterized by transmitting an ultrasound wave to within an object to thereby collect ultrasound echo signals from within the object, acquiring power and variance at a large number of two-dimensionally distributed sampling points, reflecting the strength of power at a given sampling point on at least one of luminance, chroma and hue of its corresponding pixel, and when there are two sampling points identical in power but different in variance and low in power, displaying a pixel corresponding to the sampling point relatively large in variance so as to be seen relatively higher in power than a pixel corresponding to the sampling point relatively small in variance.
In the ultrasonic image displaying method according to the second aspect, the strength of power is reflected on at least one of the luminance, chroma and hue of each pixel. In addition to the above, however, each sampling point relatively large in variance is displayed so as to be seen relatively high in power in a power low region.
When contrast agents are administered to increase power, blooming can be inhibited by greatly reducing gain. On the other hand, the capability of projecting thin blood vessels in the form of a power display is also degraded due to the great reduction in gain. However, when the contrast agents are administered, the variance becomes also large as well as an increase in power. Therefore, the power of each sampling point relatively large in variance is turned up and thereby displayed so as to have become high apparently in the power low region wherein the blooming presents a problem. As a result, the capability of projecting the thin blood vessels is enhanced. Namely, it is possible to inhibit the blooming and prevent degradation in the capability of projecting the thin blood vessels.
In a third aspect, the present invention provides an ultrasonic image displaying method characterized by transmitting an ultrasound wave to within an object to thereby collect ultrasound echo signals form within the object, acquiring power and variance at a large number of two-dimensionally distributed sampling points, increasing luminance according as pixels corresponding to sampling points high in power in a power high region, setting a load of power higher than a load of variance when the variance is small and setting a load of power lower than a load of variance when the variance is large, in a power low region to thereby determine a load sum of the power and variance, and generating and displaying an ultrasonic image increased in luminance according as pixels corresponding to sampling points large in the load sum.
In the ultrasonic image displaying method according to the third aspect, the luminance is enhanced according as a pixel corresponding to each sampling point high in power in a power high region. On the other hand, in a power low region, the luminance is raised according as pixels corresponding to sampling points large in load sum of power and variance. When the variance is small at this time, the load of the power is made larger than that of the variance. When the variance is large, the load of the power is set smaller than that of the variance.
When contrast agents are now administered to increase power, blooming can be inhibited by greatly reducing gain. On the other hand, the capability of projecting thin blood vessels in the form of a power display is also degraded due to the great reduction in gain. However, when the contrast agents are administered, the variance becomes also large as well as an increase in power. Therefore, the luminance of each sampling point relatively large in variance is turned up and thereby raised in the power low region wherein the blooming presents a problem. As a result, the capability of projecting the thin blood vessels is enhanced. Namely, it is possible to inhibit the blooming and prevent degradation in the capability of projecting the thin blood vessels.
In a fourth aspect, the present invention provides an ultrasonic image displaying method characterized by transmitting an ultrasound wave to within an object to thereby collect ultrasound echo signals from within the object, acquiring power and variance at a large number of two-dimensionally distributed sampling points, reflecting the strength of power on at least one of luminance, chroma and hue of its corresponding pixel in a power high region, setting a load of power higher than a load of variance when the variance is small and
Armstrong Teasdale LLP
GE Medical Systems Global Technology Company LLC
Horton Esq. Carl B.
Imam Ali M.
LandOfFree
Ultrasonic diagnosing apparatus and method for virtually... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrasonic diagnosing apparatus and method for virtually..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic diagnosing apparatus and method for virtually... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097112